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Abstract
High-dimensional motion planning problems can often be solved significantly faster by using multilevel abstractions.
While there are various ways to formally capture multilevel abstractions, we formulate them in terms of fiber bundles.
Fiber bundles essentially describe lower-dimensional projections of the state space using local product spaces, which
allows us to concisely describe and derive novel algorithms in terms of bundle restrictions and bundle sections. Given
such a structure and a corresponding admissible constraint function, we develop highly efficient and asymptotically-
optimal sampling-based motion planning methods for high-dimensional state spaces. Those methods exploit the
structure of fiber bundles through the use of bundle primitives. Those primitives are used to create novel bundle
planners, the rapidly-exploring quotient-space trees (QRRT*), and the quotient-space roadmap planner (QMP*).
Both planners are shown to be probabilistically complete and almost-surely asymptotically optimal. To evaluate our
bundle planners, we compare them against classical sampling-based planners on benchmarks of four low-dimensional
scenarios, and eight high-dimensional scenarios, ranging from 21 to 100 degrees of freedom, including multiple robots
and nonholonomic constraints. Our findings show improvements up to 2 to 6 orders of magnitude and underline the
efficiency of multilevel motion planners and the benefit of exploiting multilevel abstractions using the terminology of fiber
bundles.
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1 Introduction
As human beings, we often tackle complex problems by
employing abstraction hierarchies (Simon 1969; Ballard
2015). Abstraction hierarchies, however, are not only helpful
for us, but they can also be used by robots to solve high-
dimensional motion planning problems—efficiently, and
with strong guarantees (Orthey and Toussaint 2019; Reid
et al. 2019; Ichter and Pavone 2019; Vidal et al. 2019;
Gochev et al. 2012).

However, abstractions in robot motion planning are
difficult to model. The state spaces involved are usually
continuous, high-dimensional, and might contain intricate
constraints (Konidaris 2019). It is often unclear how
to model abstractions over such state spaces, how such
abstractions can be efficiently exploited, and how we can
keep completeness, or optimality guarantees.

To tackle this problem, we introduce the framework of
fiber bundles (Steenrod 1951; Lee 2003) to robot motion
planning. Fiber bundles are a convenient way to model
multilevel abstractions, because they provide the useful
concepts of bundle sections and restrictions. Both bundle
sections and restrictions allow us to develop novel planning
algorithms to exploit them for efficient sampling. Fig. 1
illustrates these two notions, which we will introduce in
more detail later. On the left, we show an abstraction (a
projection) from the torus T 2 to the circle S1. A path on
the circle (magenta) imposes a path restriction (dark grey)
on the torus T 2. On this path restriction, we can find path
sections (green), which are paths which project onto the path

Figure 1. Efficient search over fiber bundles by exploiting path
restrictions and sections. Left: A fiber bundle T 2 → S1 which
abstracts the Torus to a base space (circle). A path on the base
space (magenta) imposes a path restriction (dark grey) on the
Torus, on which we can find a section (green). Right: A
non-trivial fiber bundle from the Mobius strip to a circle, with
path restriction (dark grey), and a planned tree (green).

on the circle. The path on the circle acts here as a guide to
quickly find solution paths. On the right of Fig. 1, we show
the same scenario for the Mobius strip, which is a non-trivial
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High-Dimensional State Space
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Figure 2. Overview about the contributions of this paper (gray boxes are input). We tackle motion planning in high-dimensional
state spaces by imposing multilevel abstractions. Those abstractions are modelled as fiber bundles (Sec. 4), from which bundle
primitives are derived (Sec. 5), and the bundle planners QRRT, QRRT*, QMP, and QMP* are created (Sec. 6). Those bundle
planners efficiently exploit bundle primitives. Given a new query in a high-dimensional state space, this allows us to plan and
optimize motions, even in scenarios where non-bundle planners fail.

fiber bundle (Möbius 1858). A tree (green) is shown on the
path restriction (dark grey), where planning is restricted by
the path on the circle (magenta). By constructing sections
and restrictions, we can create novel motion planners, which
are able to quickly find relevant regions in state space to
plan in. This allows those planner to efficiently solve high-
dimensional motion planning problems. An overview of our
approach is shown in Fig. 2.

1.1 Our Contributions
Our work builds on prior publications at the International
Conference on Intelligent Robots and Systems (IROS)
(Orthey et al. 2018) and the International Symposium on
Robotics Research (ISRR) (Orthey and Toussaint 2019). Our
contributions over this prior work are:

1. We propose to formulate multilevel motion planning
problems using the terminology of fiber bundles, and
introduce the particularly useful notions of bundle
sections and bundle restrictions.

2. Based on this formulation, we improve upon previous
bundle planners QRRT and QMP and develop two new
bundle planners QRRT* and QMP*.

3. We show QRRT* and QMP* to be probabilistically
complete and asymptotically optimal by inheritance
from RRT*, and PRM*.

4. We define primitive methods on fiber bundles
and conduct a meta-analysis to find the best
implementation of those methods.

5. We provide open source implementations of fiber
bundles and bundle planners (together with a high-
level introduction, a tutorial, and demos), which is
freely available in the open motion planning library
(OMPL).

6. We evaluate QMP, QMP*, QRRT, and QRRT* by
comparing them against planners from OMPL on four
low-dimensional scenarios ranging from 2 degrees of
freedom (dof) to 7-dof, and on eight high-dimensional
scenarios ranging from 21-dof to 100-dof.

Our evaluations show that our planners QMP, QMP*,
QRRT, and QRRT* can efficiently exploit fiber bundles.
While they are competitive in low-dimensional spaces, they
are particularly useful in high-dimensional spaces, where
other planners have difficulty finding solutions. We show that
for high-dimensional state spaces, our bundle space planners

can provide runtime improvements by up to 2 to 6 order of
magnitude.

2 Related Work

We provide a brief overview on motion planning with focus
on optimal planning. We then discuss multilevel motion
planning by discussing how our approach of fiber bundles
is connected to existing research. In particular, we stress
the point that fiber bundles often contribute additional
vocabulary, which we can exploit to develop novel methods,
simplify notations and better structure our code. We finish by
reviewing complementary approaches to fiber bundles and
we discuss what our approach adds to existing approaches in
(optimal) multilevel motion planning.

2.1 Motion Planning
To solve motion planning problems, we need to develop
algorithms to find paths through the state space of a robot
(Lozano-Pérez 1983). Searching such a state space is NP-
hard (Canny 1988), but we can often efficiently find solutions
using sampling-based algorithms (LaValle 2006; Salzman
2019), where we randomly sample states and connect them
to a graph (Kavraki et al. 1996) or to a tree (Lavalle 1998).
Many variations are possible, for example using bidirectional
trees growing from start and goal state (Kuffner and LaValle
2000; LaValle and Kuffner Jr 2001), lazy evaluation of
edges (Bohlin and Kavraki 2000; Mandalika et al. 2019),
sparse graphs (Siméon et al. 2000; Jaillet and Siméon 2008),
safety certificates (Bialkowski et al. 2016) or deterministic
sampling sequences (Janson et al. 2018; Palmieri et al. 2019).

Often, we like to find an optimal path by minimizing
an optimization objective (Karaman and Frazzoli 2011). To
find optimal paths, we could transfer ideas from classical
planning like lazy edge evaluation (Hauser 2015) or sparse
graphs (Dobson and Bekris 2014). However, cost function
landscapes (Jaillet et al. 2010) often provide additional
information we can exploit. Examples include informed sets
to prune irrelevant states (Gammell et al. 2018, 2020) or
fast marching trees to grow trees outward in cost-to-come
space (Janson et al. 2015). Recently, sampling-based motion
planning algorithms have also been extended to address
zero-measure constraints (Kingston et al. 2019), implicit
constraints (Jaillet and Porta 2013), dynamic constraints (Li
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et al. 2016), or dynamic environments (Otte and Frazzoli
2016).

All those algorithms can robustly solve many planning
problems, provide formal guarantees like probabilistic
completeness, or asymptotic optimality, and have been
verified in a wide variety of applications (LaValle 2006;
Şucan et al. 2012). However, as we show in Sec. 8, we
often cannot use them to solve high-dimensional planning
problems in a reasonable amount of time (like less than 60
seconds). We believe additional information is required to
solve those problems efficiently. A possible candidate for this
additional information are multiple levels of abstraction.

2.2 Multilevel Motion Planning
In multilevel motion planning, we impose a multilevel
abstraction on the state space and we develop algorithms
which exploit this abstraction. While several models for
multilevel motion planning have been put forward, we
propose to use fiber bundles. To justify this decision, we
show their relation to alternative modelling approaches and
provide clues to the additional value they bring to the table.

2.2.1 Quotient Spaces Fiber bundles are related to
quotient spaces (Orthey et al. 2018; Orthey and Toussaint
2019; Brandao and Havoutis 2020), latent spaces (Ichter
and Pavone 2019) or sub-spaces (Reid et al. 2020) in that
we can represent those spaces as the base space of a fiber
bundle. We can often create such a base space by taking
the quotient of an equivalence class (Pappas et al. 2000).
Using the ideas of base spaces, there are two interesting
special cases. First, we can use base spaces to simplify
a nonholonomic state space to a holonomic state space
(Sekhavat et al. 1998; Vidal et al. 2019). Often, having a
path on the base space is enough to find a global solution, in
particular if some sort of smoothness constraint is imposed
(Vidal et al. 2019; Hönig et al. 2018). Second, we can use
sequences of base spaces to simplify multi-robot planning
problems (Erdmann and Lozano-Perez 1987; Siméon et al.
2002; Solovey and Halperin 2014). We can often solve
such problems efficiently by graph coordination. In graph
coordination, we first plan a graph on each individual
robot subspace, then we combine them using specialized
algorithms like sub-dimensional expansion (Wagner and
Choset 2015) or directional oracles (Solovey et al. 2016;
Shome et al. 2020). This is different from our approach,
in that graphs are constructed independently, while we
construct them sequentially, similar to a prioritization of
robots (Erdmann and Lozano-Perez 1987; Van Den Berg and
Overmars 2005; Ma et al. 2019).

While numerous works exist to exploit sequences of
base spaces (Zhang et al. 2009; Vidal et al. 2019), we
like to highlight two algorithms. First, the Manhattan-like
rapidly-exploring random tree (ML-RRT) (Cortés et al.
2008; Nguyen et al. 2018), where path sections are computed
similar to the L1 interpolation we advocate. However, the
ML-RRT approach differs from ours, in that we use a
different collision checking function for the base space
and we give formal guarantees using restriction sampling.
Second, the hierarchical bidirectional fast marching tree
(HBFMT) algorithm (Reid et al. 2019, 2020), where
restriction sampling is used on sequences of subspaces.

Similar to our approach, Reid et al. (2020) prove HBFMT
to be almost-surely asymptotically optimal by inheritance
from BFMT*. Our approach is similar in that we develop
asymptotically optimal algorithms based on RRT* and
PRM*. However, contrary to both Reid et al. (2020)
and Jaillet and Siméon (2008), we use quotient spaces
instead of subspaces, we support manifolds instead of
only Euclidean spaces, we support multiple robots with
nonholonomic constraints, and we provide a variable path
bias for restriction sampling (contrary to a fixed path
bias Reid et al. (2020)). We also differ by providing a
recursive path section method which we show to quickly find
sections even in high-dimensional state spaces.

2.2.2 Constraint Relaxations Fiber bundles are related
to constraint relaxations (Boyd and Vandenberghe 2004;
Roubı́ček 2011), in that we can often model constraint
relaxations as a particular type of fiber bundle, i.e. a
bundle with an admissible projection, which does not
reduce the dimensionality. We can often create constraint
relaxations by increasing the free space (Hsu et al. 2006),
by retracting the obstacle geometry (Saha et al. 2005),
or by shrinking robot links sequentially to zero (Baginski
1996). While constraint relaxations often do not decrease
the dimensionality, there are, however, extensions which
do decrease the dimensionality, like progressive relaxations
(Ferbach and Barraquand 1997) or iterative constraint
relaxations (Bayazit et al. 2005). In both methods, we either
remove links or robots from the problem and we can use
them to model the same multilevel abstractions as we can
do with fiber bundles. However, by using fiber bundles, we
can add additional insights like path sections and restriction
sampling.

Closely related to relaxations are projections (Şucan and
Kavraki 2009, 2011; Röwekämper et al. 2013; Luna et al.
2020). Projections are a component of fiber bundles, which
we use to project the state space onto a lower-dimensional
base space. Contrary to quotient spaces, projections are
often not required to be admissible but can even be random
(Şucan and Kavraki 2009). A noteworthy approach is
projection using adaptive dimensionality (Vahrenkamp et al.
2008; Gochev et al. 2012, 2013), where projections remove
degrees-of-freedom (dof). We can remove dofs of a robot
by having a fixed projection (Gochev et al. 2012; Yu et al.
2020) or by adjusting the projection depending on which
links are closest to obstacles (Yoshida 2005; Kim et al. 2015).
While similar to fiber bundles, both Yoshida (2005) and Kim
et al. (2015) emphasize the role of distances in workspace
to choose a multilevel abstraction, which is an interesting
complementary approach to ours. We differ, however, by
supporting multiple robots, nonholonomic constraints, and
by providing asymptotic optimality guarantees.

2.2.3 Admissible Heuristics Fiber bundles are related to
admissible heuristics (Pearl 1984; Persson and Sharf 2014;
Aine et al. 2016), in that we can use metrics on the lower-
dimensional base space as admissible heuristics (Passino
and Antsaklis 1994) to guide search on the state space.
This is closely related to the idea of computing lower
bounds for planning problems (Salzman and Halperin 2016).
When using sequences of fiber bundles, we basically use
tighter and tighter lower bounds on the real solution. Our
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approach differs, however, in that we do not consider
inadmissible heuristics, which we could combine with
admissible heuristics to often speed up planning (Aine et al.
2016; Tonneau et al. 2018).

While there are many ways to define admissible heuristics
(Aine et al. 2016), we believe there are two main approaches
for the case of continuous state spaces, namely low-
dimensional sampling and guide paths. In low-dimensional
sampling (Şucan and Kavraki 2009), we first sample on a
lower dimensional base space, then use those samples to
restrict sampling on the state space. There are two main
approaches. First, we can select sequences of subspaces of
the state space (Xanthidis et al. 2018), then sample them
by selecting the subspaces based on the density of samples.
Second, we can use workspace sampling (Van den Berg
and Overmars 2005; Zucker et al. 2008; Rickert et al.
2014; Luna et al. 2020), where state space samples are
taken from the restriction of collision-free sets in workspace.
We can do workspace sampling by focusing on narrow
passages (Van den Berg and Overmars 2005), or by selecting
promising points on the robot and guiding them through the
workspace (Luna et al. 2020). Our approach is similar in that
we use lower-dimensional sampling on the base space and
we select base spaces based on a density criterion (Xanthidis
et al. 2018). However, we differ by smoothly changing
between path and graph restriction sampling, and by using
a recursive path section method to efficiently find solution
paths.

Closely related to low-dimensional sampling is the
concept of guide paths (Tonneau et al. 2018; Ha et al.
2019). A guide path is a solution on the base space, which
we use to restrict sampling on the state space (Palmieri
et al. 2016). Guide paths are often used in contact planning
(Bretl 2006; Tonneau et al. 2018), where we can often
give sufficiency conditions on when a feasible section exists
(Grey et al. 2017). When no feasible section exists, some
methods fail while other gradually shift towards graph
restriction sampling (Grey et al. 2017). It is also possible
to compute multiple guide paths which increase our chance
to find a feasible section (Vonásek and Pěniĝka 2019; Ha
et al. 2019; Orthey et al. 2020). While we also sample along
guide paths (path restriction sampling), we differ in two
ways. First, we use adaptive restriction sampling to gradually
change sampling from path to graph restriction, whereby we
guarantee asymptotic optimality. Second, we use a recursive
path section method to quickly find feasible path sections in
high-dimensional state spaces.

2.3 Exploiting Additional Information
Fiber bundles are a way to exploit additional information.
Other approaches, complementary to fiber bundles, exists.
One approach is region-based decomposition. In a region-
based decomposition, the problem is divided into regions
in which planning becomes computationally efficient (Tous-
saint and Lopes 2017; Orthey et al. 2020). Such an approach
can be done in two ways. First, the workspace can be
divided (Plaku et al. 2010; Vega-Brown and Roy 2018),
for example using subdivision grids (Plaku 2015), Delaunay
decompositions (Plaku et al. 2010), or convex regions (Deits
and Tedrake 2014; Vega-Brown and Roy 2018). Second,
the solution path space can be divided (Farber 2008), for

example by using the notion of homotopy classes (Munkres
2000), where two paths are considered to be equivalent if
we can deform them into each other. Homotopy classes
are closely related to the notion of topological complexity
(Farber 2017), the minimal number of regions in state space
which are collapsible into a point (null-homotopic). Several
practical solutions exists to compute path homotopy classes,
like the H-value (Bhattacharya et al. 2012; Bhattacharya and
Ghrist 2018), simplicial complices (Pokorny et al. 2016a),
task projections (Pokorny et al. 2016b), or mutual crossings
of robots (Mavrogiannis and Knepper 2016). However, all
those approaches often become computationally intractable
for high-dimensional systems, multiple robots, or nonholo-
nomic constraints. Fiber bundles are a complementary effort
to organize regions on different levels of abstraction (Orthey
and Toussaint 2020).

Apart from region-based decompositions, we identify
three other methods to exploit additional information. First,
we can exploit distance information in workspace to compute
sets of feasible states (Quinlan 1994), which can be used to
plan safe motions (Bialkowski et al. 2016), or to compute
covers of free space (Lacevic et al. 2016; Lacevic and
Osmankovic 2020). Second, we can exploit differentiable
constraints when available (Toussaint et al. 2018; Henkel and
Toussaint 2020). Third, we can exploit alternative state space
representations, for example by using topology-preserving
mappings (Zarubin et al. 2012; Ivan et al. 2013). This is
complementary to our approach, in that Zarubin et al. (2012)
tries to find alternative representations of a state space, while
we concentrate on finding simplifications of a given space.

2.4 Fiber Bundles and Prior Approaches

Fiber bundle planners exploit a number of projections to
accelerate planning performance. Prior approaches using
projections are the KPIECE planner (Şucan and Kavraki
2009), which uses a projection onto a simplified space,
and the SBL planner (Sánchez and Latombe 2003a),
which plans using a simplified grid of the state space.
However, most prior approaches are limited in the number
of projections (Şucan and Kavraki 2009; Cortés et al.
2008), the number of robots (Vidal et al. 2019), use
only holonomic constraints (Zhang et al. 2009), use only
Euclidean spaces (Reid et al. 2019, 2020), or work only in
specific situations (Gochev et al. 2012; Kim et al. 2015).
Instead, we can apply fiber bundles to any manifold space
(we show it for compound spaces including the special
Euclidean and orthogonal groups in 2d and 3d), any finite
number of projections (up to 98 in our evaluations), any
finite number of robots (up to 8 in our evaluations) and any
nonholonomic constraint (for Dubin’s state spaces in our
evaluations). With fiber bundles, we also provide a shared
vocabulary, which can unify methods like path restriction
sampling (Zhang et al. 2009; Tonneau et al. 2018; Vidal
et al. 2019), or graph restriction sampling (Grey et al. 2017;
Orthey et al. 2018; Reid et al. 2020). Since we also provide
an open source implementation in OMPL, we can benchmark
different multilevel strategies (Appendix C) and we can show
the benefit of fiber bundles compared to classical motion
planners (Sec. 8).
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3 Background on Optimal Motion Planning
Let R1, . . . , RM be M robots with associated (component)
state spaces Y1, . . . , YM , respectively. We can combine
the robots into one generalized robot R with associated
(composite) state space X = Y1 × · · · × YM .

To each state space X , we add two complementary
structures. First, we add a constraint function φ : X →
{0, 1} on X which takes an element x in X and returns zero
if x is feasible and one otherwise. Examples of constraints
are joint-limits, self-collisions, environment-robot collisions
and robot-robot collisions. Second, we add a steering
functionψ, which takes two elements x1 and x2 inX as input
and returns a path steering the robot from x1 to x2 (while
potentially ignoring constraints). We denote a state space
X together with the constraint function φ and the steering
function ψ as a planning space (X,φ, ψ). The planning
space implicitly defines the free state space as Xf = {x ∈
X | φ(x) = 0}.

Given a planning space, we define a motion planning
problem as a tuple (xI , XG, X). To solve a motion planning
problem, we need to develop an algorithm to find a path from
the initial state xI ∈ Xf to a desired goal region XG ⊆ Xf.
Often, we are not only interested in some path, but in a path
which optimizes a cost functional c : XI → R≥0 whereby
I is the unit interval and XI is the set of continuous paths
from I to X with finite length (Karaman and Frazzoli 2011;
Janson et al. 2018). We define the optimal motion planning
problem as finding a path from xI toXG minimizing the cost
functional c.

4 Multilevel Motion Planning

Let X be a state space and let XK
πK−1−→ . . .

π1−→ X1 be a
multilevel abstraction of X such that XK = X , and πk are
projections from a state space Xk to a state space Xk−1.
Each projection πk : Xk−1 → Xk is modelled as a fiber
bundle (see Sec. 4.1). Given a start configuration xI ∈ XK ,
a goal region XG ⊆ XK , and an objective cost functional
c, we define the optimal multilevel motion planning problem
as the tuple (xI , XG, X1, . . . , XK) asking us to find a path
from xI to XG while minimizing the cost c. Thus, by
defining an optimal multilevel motion planning problem,
we generalize optimal motion planning (Sec. 3) by adding
additional information.

In the following sections, we discuss the framework of
fiber bundles which provides us with the concepts of bundle
restrictions and bundle sections. Those concepts will be used
to define primitive methods (Sec. 5), which are fundamental
to create bundle planners which exploit those primitive
methods and plan efficiently over fiber bundles (Sec. 6).

4.1 Fiber bundle formulation
To model multiple levels of abstractions of state spaces,
we use the framework of fiber bundles (Steenrod 1951;
Husemoller 1966; Lee 2003). A fiber bundle is a tuple
(F,X,B, π), consisting of the total space X , the fiber space
F , the base space B and the projection map

π : X → B . (1)

The mapping π needs to fulfil two properties:

xB

π−1(xB)

Figure 3. Bundle restrictions on fiber bundle R3 → R2. Left:
Point restriction (Fiber). Middle: Path restriction. Right: Graph
restriction.

1. Union of Fibers. The total space X is a (disjoint)
union of copies of the fiber space F , parameterized
by the base space B (Lee 2003). This means that, if
we take any element b in B, the preimage π−1(b) is
isomorphic to the fiber space F .

2. Local Product Space. The total space X locally
equals the product space B × F . This means, if we
take any element b in B, there exists a neighborhood
U (an open set containing b) such that the preimage
π−1(U) is homeomorphic to U × F (Lee 2003).

In other words, a fiber bundle locally has the structure
of a product space, and π provides a projection from the
total space X to a “parameterization” of fibers in B. This
local product structure and the projection π aligns with the
terms of equivalence classes and quotient spaces as described
in Appendix A. Our main motivation for leveraging the
terminology of fiber bundles are the notions we introduce
next.

4.2 Bundle Restrictions
Given a fiber bundle (F,X,B, π), and a subset U ⊆ B, a
bundle restriction X|U ⊆ X is the subset of the total space
that projects to U . This set X|U = π−1(U) is called the
restriction of X to U (Tu 2017).

We consider three kinds of restrictions. First, given a
point xB on the base space, we use its restriction F |xB

=

π−1({xB}). Note that we call F |xB
a fiber as it is, by

definition, isomorphic to F (Assertion 1.). We visualize this
in Fig. 3 (Left). Second, given a path pB : I → B on the base
space, with I = [0, 1] the unit interval, we have its restriction
X|pB = π−1({pB(t) : t ∈ I}) (Fig. 3, Middle). And third,
given a graph GB on the base space, we have the graph
restriction π−1(GB) ⊆ X , where we unproject the union of
all its vertices and edges (Fig. 3, Right).

We use these three restrictions for different computations.
First, we use point restrictions (fibers) to lift base space
elements up to the total space (Sec. 4.3). Second, we use
path restrictions to quickly compute sections, which are
paths on the total space constraint to the path restriction
(Sec. 4.3 and Sec. 5.4). Third, we use graph restrictions
to formulate restriction sampling, i.e. sampling restricted
to elements of the total space that project onto the base
space graph (Sec. 5.1). It is important to note that restriction
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B

X

b1 b2 b3 b4 b5

x1

x2x′2

x′1

Figure 4. Bundle sections on fiber bundle X → B with base
path {b1, b2, b3, b4, b5}. We show three interpolated sections on
the bundle space: L2 section (solid line), L1 fiber first section
(dashed line) and L1 fiber last section (dotted line).

sampling is dense in the free total space, if the graph on B is
dense. We use this denseness property to prove probabilistic
completeness and asymptotic optimality (Sec. 7).

4.3 Bundle Sections
Given a fiber bundle (F,X,B, π) and a subset U ⊆ B of the
base space, a section of U is a map s : U → X such that
π(s(u)) = u (Lee 2003). In other words, while a restriction
X|U unprojects U to all elements x ∈ X that project to
U , a section maps each u ∈ U to just one specific element
x ∈ X that projects to u (It also follows, that s(u) ∈ X|U
for any section s.). We define useful cases of sections in the
following.

4.3.1 Lift When U contains only a single element {b}, we
call the section a lift. A lift s(b) takes as input an element b in
B and returns an element x on the total space. We often like
to single out a specific element x by additionally choosing
a fiber space element f , whereby we overload the lift as
s(b, f). In the case ofX being a product space, we define the
lift as s(b, f) = (b, f). However, if X → B is not trivial, the
base space element b defines an isomorphic transformation
of the fiber space (including the fiber element f ), which in
turn uniquely defines the element x. In this work, all bundle
spaces are trivial except the Mobius strip. For the Mobius
strip, we define the transformation as a linear transformation,
involving a translation of the fiber space (here: the unit [0, 1]
interval) around the circle while simultaneously rotating the
fiber space.

4.3.2 Path Section When the subset U is an interval, we
call the section a path section. A path section of a path pB :
I → B is itself a path p : I → X such that pB = π ◦ p.

Our algorithms will aim to find feasible path section, i.e.,
feasible unprojections of paths in the base space to paths in
the full space. We use three interpolation methods to this
end. All three methods take as input a base path pB and
two total space elements x1 and x2 in X . Let πF be the
projection of the total space onto the the fiber space (i.e.
orthogonal to the base space projection π). We then compute
fiber space elements f1 = πF (x1) and f2 = πF (x2) that
introduce coordinates along the fibers, and which we use
to interpolate. Each method differs by how we interpolate
between f1 and f2 along the path restriction π−1(pB) (see
also Fig. 4).

4.3.3 L2 Section To interpolate a section, we can use a
straightforward L2 section. To interpolate an L2 section, we
use the shortest path under the L2-norm, which is simply the
linear interpolation

lL2(t) = (1− t)f1 + t(f2 − f1) . (2)

We then compute the section as

p(t) = s(pB(t), lL2(t)) (3)

by lifting each path base element to the bundle space. We
use the L2 section mainly to compute quotient space metrics
(Sec. 5.2).

4.3.4 L1 Section An alternative to L2 sections are L1

sections. In an interpolation with an L1 section, we compute
the section as

p(t) = s(pB(t), lL1(t)) (4)

with the interpolation

lL1 =

{
f1, if t < 1

2

f2, if t ≥ 1
2

(5)

We use two flavors of L1 sections. The first flavor are fiber
first (FF) sections, where we use the adjusted base path as

pFF(t) =

{
pB(0), if t < 1

2

pB(2(t− 1
2 )), if t ≥ 1

2

(6)

The second flavor are L1 fiber last (FL) sections, where we
use the base path as

pFL(t) =

{
pB(2t), if t < 1

2

pB(1), if t ≥ 1
2

(7)

Both fiber first and fiber last L1 sections are a cornerstones
of our find section method, which we will use alternately to
find feasible sections (see Sec. 5.4 for details).

4.4 Bundle Sequences
With a fiber bundle, we model a single state space
abstraction. To model multiple levels of abstraction, we can
chain fiber bundles into sequences. A fiber bundle sequence
is a tuple (X1:K , F1:K−1, π1:K−1) such that the k-th base
space is equal to the k − 1-th total space. We write such a
sequence as

XK
πK−1−−−→ XK−1

πK−2−−−→ . . .
π1−→ X1 (8)

whereby we call the space Xk the k-th bundle space.

4.5 Admissible Fiber Bundles
An important type of fiber bundles are the ones using
admissible projections (Orthey et al. 2018). An admissible
projection is a projection preserving the feasibility of a state.
This is important to preserve probabilistic completeness and
asymptotic optimality. We next define admissible projections
and discuss the corresponding notion of admissible fiber
bundles.
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Let φ and φB be constraint functions on X and B,
respectively. Given the constraint functions, we can define
the free total spaceXf and the free base spaceBf (see Sec. 3).
For an admissible projection, we require the projection
mapping to fulfill the first two requirements (Assertions 1
and 2 above) plus the following third requirement:

3. Admissible. The projection mapping does not
invalidate solutions. This means, if we map the free
state space Xf via π onto the base space, then the
image π(Xf) is a subset of the free base space Bf.
Or, equivalently, φB(π(x)) ≤ φ(x) for any x ∈ X
(Orthey and Toussaint 2019).

If a projection mapping is admissible w.r.t. given φ and
φB , we call the fiber bundle an admissible fiber bundle.
Analogously, if a sequence of fiber bundles contains only
admissible projections, we call it an admissible fiber bundle
sequence. It is important to note that admissibility is a
requirement, if we like to prove probabilistic completeness
or asymptotic optimality.

Using admissible fiber bundle (sequences), we thus can tie
together the notions of quotient spaces, constraint relaxations
and admissible heuristics. First, we can interpret fiber
bundles as a generalization of constraint relaxations (Orthey
and Toussaint 2019), where paths on the base space are
lower bound estimates on solution paths on the total space.
Second, we can use a solution on the base space as an
admissible heuristic (Aine et al. 2016) and exploit it by using
either restriction sampling, by using a quotient space (base
space) metric (Passino and Antsaklis 1994; Pearl 1984), or
by computing sections along a given base space path (Zhang
et al. 2009).

4.6 Examples of Fiber Bundles
To make the discussion more concrete, we discuss two
(multilevel) abstractions which are often used in motion
planning.

4.6.1 Prioritized Multi-Robot Motion Planning To plan
motions for multiple robots, we can prioritize the robots
(Erdmann and Lozano-Perez 1987; Ma et al. 2019). Given
M robots, we can order them, then plan for the first robot
and use its motion as a constraint on the motion of the next
robot. We can formalize this as a fiber bundle sequence

Y1:M
πM−1−−−−→ Y1:M−1

πM−2−−−−→ · · · π1−→ Y1 (9)

whereby Ym is the state space of the m-th robot and Y1:m
is the Cartesian product of the state spaces Y1, . . . , Ym. In
the fiber bundle sequence, we remove, in each step, the
configuration space and the geometry of the least important
robot. We can then either plan a path in Y1 and use it as a
constraint for the next robot (i.e. finding a feasible section
in the path restriction). This is known as path coordination
(Siméon et al. 2002). Or we use the graph on Y1 to restrict
sampling for the remaining robots, which is known as graph
coordination (Svestka and Overmars 1998). In practice, we
can realize graph coordination either by using an oracle
to guide expansion (Solovey et al. 2016) or by expanding
dimensionality when conflicts arise (Wagner and Choset
2015).

Algorithm 1 RESTRICTIONSAMPLING(Xk)

1: if EXISTS(Xk−1) then
2: xbase ← SAMPLEBASE(Gk−1) . Element of Xk−1
3: xfiber ← SAMPLE(xbase, Fk) . Element of Fk
4: xrand ← LIFT(xbase, xfiber) . Element of Xk

5: else
6: xrand ← SAMPLE(Xk)
7: end if
8: return xrand

4.6.2 Tangent Bundle and Path-Velocity Decomposition
When planning for a dynamical system, we often can
simplify planning using a tangent bundle decomposition.
Given a state space X we impose a tangent bundle X =
TM =M × Rn with projection

M × Rn π−→M (10)

whereby n = dimM , Rn is the fiber space and M is
the base space. We call M the configuration space and
TM the tangent bundle. Planning on tangent bundles often
follows a two step approach. First, we compute a path pM
on the configuration space M (the base space) avoiding
obstacles and self-collisions. Second, we compute a velocity
along the path, i.e. a time reparameterization. Such a time
reparameterization is a path section of pM and we can find
such a section by solving a convex optimization problem
(Bobrow et al. 1985), which we can solve efficiently (Pham
and Pham 2018). To guarantee completeness, however, we
need to either plan on the full tangent bundle TM (LaValle
and Kuffner Jr 2001) or track valid speed profiles along paths
on M (Pham et al. 2017).

5 Primitive Methods on Fiber Bundles
To exploit fiber bundles, we derive a set of primitive methods.
This includes methods to sample the base space, to compute
a metric, to select a bundle space to grow next, and to
rapidly find a feasible section. To implement each method,
we develop several different strategies and discuss how they
influence the algorithms. To select the best strategies for each
algorithm, we perform a meta-analysis in Appendix C.

To use the primitive methods, we assume that every bundle
space Xk has access to the following fiber bundle specific
functions:

1. A fiber space Fk = Xk/Xk−1
2. A base space projection πk : Xk → Xk−1
3. A fiber space projection πFk : Xk → Fk
4. Projected start state xkI and goal region Xk

G

5. A graph Gk = (Vk, Ek) containing |Vk| vertices and
|Ek| edges

The primitives will be used in the development of the
bundle planners (Sec. 6), where we exploit primitives for
improved planning performance.

5.1 Restriction Sampling
In restriction sampling, we sample states on the total space
Xk by sampling exclusively in the graph restriction induced
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by the graph on the base space Xk−1 (see Sec. 4.2), as
we detail in Alg. 1. We first check if the base space Xk−1
exists (Line 1.1). If it does not exists, we revert to a standard
sampling method like uniform sampling (Line 1.6). If it does
exists, we first sample a base space element (Line 1.2), then
use it to sample a fiber space element (Line 1.3) and finally
lift the base space element to the bundle space using the
fiber space element (Line 1.4). The lift operation depends
on if the bundle is trivial, in which case we just concatenate
base element and fiber element. If the bundle is non-trivial
(like the Mobius strip), we use the base element to index the
correct fiber space, then use the fiber element to index the
correct bundle space element (see Sec. 4.3).

To implement the SAMPLE function, we use uniform
sampling of the space. However, other sampling techniques
are certainly possible, like Gaussian sampling (Boor et al.
1999), obstacle-based sampling (Amato et al. 1998), bridge
sampling (Hsu et al. 2003), maximum clearance (Wilmarth
et al. 1999), quasi-random (Branicky et al. 2001), utility-
based (Burns and Brock 2005), or deterministic sampling
(Janson et al. 2018; Palmieri et al. 2019). To guarantee
probabilistic completeness and asymptotic optimality, we
only need to verify that those sequences are dense.

The main method of restriction sampling is the
SAMPLEBASE method. In the SAMPLEBASE method, we
sample the graph Gk−1 on the base space. While numerous
methods exist to sample a graph (Leskovec and Faloutsos
2006), we found five methods particularly important.

5.1.1 Random Vertex Sampling First, we can chose a
vertex at random, which we refer to as Random-Vertex (RV)
sampling (Leskovec and Faloutsos 2006). In RV sampling,
we choose a random integer between 1 and |V | which
uniquely defines a vertex on the graph G. This sampling
is particularily fast (O(1) operations), but might be overly
constrictive if we sample from a tree or a graph with long
edges. However, for large graphs, this sampling procedure is
often the only alternative to not slow down sampling.

5.1.2 Random Edge Sampling Second, we can choose an
edge at random, then pick a state on this edge, a method
we refer to as Random-Edge (RE) sampling (Leskovec and
Faloutsos 2006). This method requires two operations, first
to pick an edge, then to pick a number between 0 and 1
to determine the state on the edge. This method seems to
be superior if the graph is sparse and has long edges, in
particular edges going through narrow passages.

5.1.3 Random Degree Vertex Sampling Third, we can
choose a vertex at random, but biased towards vertices
with a low degree (number of outgoing edges). We refer to
this as Random-Degree-Vertex (RDV) sampling. With RDV
sampling, we bias samples to vertices which are either in
tight corners or inside of narrow passages. Vertices in large
open passages often have many neighbors and thereby a
large degree. This method, however, requires to update a
probability function which tracks the degrees of each vertex.

5.1.4 Path Restriction Sampling Fourth, we can choose a
sample on the lowest cost path on the graph, a method we
refer to as path restriction (PR) sampling. We can utilize
PR sampling in two ways. Either, we sample on the path
restriction with a fixed probability βfixed. This is similar

to the fixed tunnel radius proposed by Reid et al. (2019).
Or, we first sample exclusively on the path restriction, then
gradually decay towards the fixed path bias. We call this
method PR decay sampling.

PR decay sampling allows us to model a change in belief.
It is often true that the shortest path on the base space
contains a feasible section, which we should search for by
exclusively sampling on the path restriction (Orthey et al.
2018). If we do not find a valid section, we should gradually
dismiss our belief that a section exists and try to sample
the graph restriction instead. To model this change in belief,
we use an exponential decay function to smoothly transition
from probability 1 down to the fixed probability βfixed using
a decay constant λ. See Appendix B for the definition of
exponential decay.

Before using PR decay sampling, we simplify the path.
Simplifying the path is similar to the local path refinement
method (Zhang et al. 2009), where a path is optimized to
increase its clearance. For this operation, we use a simple
short-cutting path optimizer, which does not slow down
planning in high-dimensional spaces.

We use a path optimizer with a cost term for path length.

5.1.5 Neighborhood Sampling Fifth, we can choose a
sample not directly on the graph, but in an epsilon
neighborhood. We refer to this as neighborhood (NBH)
sampling. NBH sampling is helpful when there is a path
through a narrow passage which comes close to its boundary.
Those paths often do not have a feasible section. Instead,
if we would perturbate the path slightly, we can often find
a path admitting a feasible section. With NBH sampling,
we first sample a configuration x exactly on the graph, and
then sample a second configuration x′ which we sample
uniformly in an epsilon ball around x. In practice, we use an
exponential decay (Appendix B) to smoothly vary the size
of the neighborhood from zero up to epsilon. With NBH
sampling, we can often solve problems where a solution
through a narrow passage has few or no samples, while using
nearby samples allows us a bit more wriggle room. Note
that instead of uniform epsilon sampling, we could also use
a Gaussian distribution with mean x and epsilon variance
(Reid et al. 2019). However, in preliminary testing, we could
not observe a difference between them.

5.2 Bundle Space Metric
An essential component of bundle algorithms are the nearest
neighbor computations, which depend on choosing a good
metric function. We discuss two possible metrics, the
intrinsic bundle metric (ignoring the base space) and the
quotient space metric (exploiting the base space).

5.2.1 Intrinsic Bundle Metric To straightforwardly attach
a metric to the bundle space, we use the geodesic distance
between two points while ignoring the base space. We
compute this intrinsic metric on X as

d(x1, x2) = dX(x1, x2) (11)

While this is a naive way to compute the metric, we note
that using base space information is often costly, and the total
space metric is often good enough (Orthey and Toussaint
2019).
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5.2.2 Quotient Space Metric If a base space is available,
we can consider it as a quotient space, on which we can
define a quotient space metric (Guo et al. 2019). To define
a quotient space metric between two states, we first project
both states onto the base space, compute a shortest path pB
using the base graph and then interpolate an L2 section along
the path restriction X|pB (see Sec. 4.3).

In particular, given two points x1 and x2 inXk, we project
them onto the base space Xk−1 to yield b1 = π(x1) and
b2 = π(x2). We then compute the nearest vertices v1 and
v2 on the graph Gk−1 and we compute a path on Gk−1
between v1 and v2 using the A* algorithm with the intrinsic
base space metric as an admissible heuristic. Finally, we use
the fiber space projection of x1 and x2 to compute fiber
space elements f1 = πF (x1) and f2 = πF (x2), which we
use to integrate an L2 section (Sec. 4.3). We then compute
the bundle space metric as

d(x1, x2) =



dX(x1, x2) v1 = v2
dF (f1, f2)

+ dB(y1, v1)

+ dB(y2, v2)

+ dGk
(v1, v2)

otherwise
(12)

with dF being the fiber space metric (L2), dB the base space
metric and dGk

the length of the shortest path on Gk between
vertices under the base space metric.

While the quotient space metric is more mathematically
sound, there are two practical problems. First, computing
this metric is costly, because we need to perform a graph
search operation. Second, the graph on the base space might
not yet be dense, thereby potentially returning values leading
to an inadmissible heuristic, which in turn would mislead the
planner on the bundle space.

5.3 Bundle Space Importance
In each iteration of multilevel motion planning, we make a
choice about expanding a graph by selecting a level. To select
a level, we attach an importance function to each bundle
space, which we use to rank the bundle spaces. We develop
three different importance strategies.

5.3.1 Uniform In uniform importance, we select all bundle
spaces an equal amount of times. This is similar to round-
robin change, similar to scheduling operations (Russell and
Norvig 2002). Here we use a slight variation, where we
compute the importance based on the number of vertices,
thereby ensuring a uniform expansion of each level. In
particular, for bundle space Xk with graph Gk and |Vk|
vertices, we compute its importance as 1

|Vk|+1 .

5.3.2 Exponential To densely cover spaces with higher
dimensions, we usually require more samples. In general,
the sampling density is proportional to N

1
d where N is the

number of samples and d the dimensionality (Hastie et al.
2009). Therefore, we should select the space with the lowest
density first, thereby guaranteeing equal sampling density
across all spaces. We can compute an exponential importance
as 1

|Vk|1/d+1
which reflects an exponential increase of

samples in higher dimensions. This idea is similar to the
selection of bundle spaces using a geometric progression

Algorithm 2 FINDSECTION(Xk)

1: if EXISTS(Xk−1) then
2: p← SHORTESTPATH(xk−1I , Xk−1

G ,Gk−1)
3: FINDSECTION(p, xkI , X

k
G, 0, true)

4: if ¬PTC(Xk) then
5: FINDSECTION(p, xkI , X

k
G, 0, false)

6: end if
7: end if

Algorithm 3 FINDSECTION(p, xa, Xk
G, d, FF )

1: Let bMAX be the maximal branching factor
2: Let dMAX be the maximal depth
3: if d ≥ dMAX then
4: return false
5: end if
6: s← INTERPOLATEL1(p, xa, Xk

G, FF ) . see Sec. 4.3
7: x← PROPAGATEWHILEVALID(s) . Return last valid
8: if x is in Xk

G then
9: return true

10: end if
11: xbase ← PROJECTBASE(x)
12: for j ← 1 to bMAX do
13: xfiber ← SAMPLE(xbase, Fk) . Sidestep on fiber
14: xj ← LIFT(xbase, xfiber)
15: if CHECKMOTION(x, xj) then
16: Gk ← Gk ∪ {x, xj}
17: pj ← GETSEGMENT(p, xbase)
18: return FINDSECTION(pj , xj , X

k
G, d+ 1, FF )

19: end if
20: end for

(Xanthidis et al. 2018). This is also related to multilevel
monte carlo (Giles 2015) and sparse grid methods (Bungartz
and Griebel 2004).

5.3.3 Epsilon Greedy Whenever we find a graph con-
necting initial and goal state on the base space, it seems
reasonable to greedily exploit this graph to find a path on the
bundle space. This strategy is not complete, since the graph
might not yet contain a feasible section (see Sec. 4.2). We
can, however, create a complete algorithm by extending the
base space with an epsilon probability while extending the
bundle space the rest of the time. We compute this as

f(k) =

{
εK−k − εK−k+1 k > 1

εK−1 otherwise
(13)

whereby k is the bundle space level andK is the total number
of bundle spaces. We then compute the importance for the
k-th bundle space as 1

|Vk|/f(k)+1 , reflecting our desire to
expand recent levels more aggressively.

5.4 Finding Path Sections
Finding path sections quickly and reliably is one of the
cornerstones of all bundle planners. In this section, we use
the interpolation methods of Sec. 4.3 to develop a recursive
path section algorithm, which we depict in Alg. 2. For this to
work, we need to have at least a base space (Line 2.1). We
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then compute the shortest path on the base space (Line 2.2)
and recursively compute a section, either by starting from an
L1 fiber-first section (Line 2.3) or if unsuccessful, by starting
from an L1 fiber-last section (Line 2.5).

To recursively compute a section, we show the pseudocode
in Alg. 3. We terminate the algorithm if we reach a certain
depth dMAX (Line 3.3) or if we reach the goal region (Line
3.8). Inside each recursion iteration, we interpolate an L1
section, either fiber first (if FF is true) or fiber last (if FF
is false) (Line 3.6). We then propagate the system along the
section while valid (Line 3.7) and return the last valid state.

If we do not reach the goal state with the last valid state, we
do up to bMAX sidesteps along the fiber space. Sidestepping
means that we project the last valid state onto the base space
(Line 3.11), then sample a random fiber space element (Line
3.13) and lift the states to the bundle space to obtain a state
xk (Line 3.14). We then check if we can move from the last
valid state to the state xk (Line 3.15). Since both states have
the same base space projection, we call this a sidestep (i.e. a
step orthogonal to the base space). If the motion is valid, we
clip the remaining base path (Line 3.17) and recursively call
the algorithm (Line 3.18). In the recursion call, we increase
the depth, use the clipped base path segment and change
the interpolation method from fiber first to fiber last. We
change the interpolation at this point, because we observe
an alternation between interpolation methods to substantially
improve runtime.

5.4.1 Nonholonomic Constraints In the case of holo-
nomic constraints, we can use the L1 interpolation (Line 3.6)
and the base space segment (Line 3.17) to follow the path
restriction exactly. However, if we have nonholonomic con-
straints, we often cannot follow the path restriction exactly,
in particular if the base space path is piece-wise linear. Note
that a base space path is often piece-wise linear if we do
not impose additional smoothness assumptions (Vidal et al.
2019; Hönig et al. 2018).

To still compute path sections over piece-wise linear
base space paths in the nonholonomic case, we do a
two-phase approach. First, we compute the interpolation
values as in Sec. 4.3, but only at discrete points, which
provides us with a set of points on the bundle space.
Second, we interpolate between those points by using the
nonholonomic steering function. While we might deviate
from the base path restriction, we follow, however, the base
path restriction as close as the steering function allows
us. This approach is similar to the idea of interpolating
waypoints with dynamically feasible path segments, which
has been done for flying quadrotors (Richter et al. 2016) and
for underwater vehicles (Yu et al. 2019). However, we differ
by first interpolating values for the fiber spaces along the base
space path. The remaining computation in Alg. 3 remains
exactly as in the holonomic case.

6 Bundle Space Motion Planners
To solve a multilevel motion planning problem, we develop
a set of algorithms generalizing existing motion planners to
fiber bundles. All those planners share the same high-level
structure, which we call a BUNDLEPLANNER (Alg. 4). In
the BUNDLEPLANNER method, we first initialize a priority
queue sorted by the importance of each bundle space (Line

Algorithm 4 BUNDLEPLANNER(xI , xG, X1, · · · , XK)

1: Let X be a PRIORITY QUEUE
2: for k = 1 to K do
3: FINDSECTION(Xk) . Sec. 5.4
4: X.PUSH(Xk)
5: while ¬PTC(Xk) do
6: Xselect = X.POP . Sec. 5.3
7: GROW(Xselect) . Sec. 6.1
8: X.PUSH(Xselect)
9: end while

10: end for

4.1). We then iterate over all bundle spaces, try to find a
section on the k-th bundle space (Line 4.3) and then push the
k-th bundle space into the priority queue (Line 4.4). We then
execute the while loop while a planner terminate condition
(PTC) is not fulfilled for the k-th bundle space (Line 4.5).
Inside the loop, we select the most important bundle space,
grow the graph or tree and push the space back into the
queue (Line 4.6 to 4.8). We terminate if the PTC for the
K-th bundle space has been fulfilled. This means we either
terminate successfully, found the problem to be infeasible or
reach a timelimit.

All bundle space algorithms are alike in sharing the same
high-level structure; each bundle space algorithm differs in
their GROW function (Line 4.7) and their primitive methods
(Sec. 5).

6.1 Bundle Planner Variants
The BUNDLEPLANNER algorithm is used to develop novel
algorithms by changing the GROW function. To implement
the GROW function, we can utilize almost any single-level
planning algorithm. In our case, we use the algorithms
RRT, RRT*, PRM and PRM* (please consult Tab. 1 for
abbreviations of algorithms).

All grow functions in a multilevel versions of our
algorithms differ from their single-level version in four
points. First, we replace uniform sampling by restriction
sampling, as we detail in Sec. 5.1. Algorithms might differ
in how we implement graph sampling in restriction sampling.
Second, when pushing a new bundle space into the priority
queue, we check for a feasible section over the solution
path on the last bundle space, as we detail in Sec. 5.4.
This computation is equivalent for each bundle planner.
Third, we rank bundle spaces based on a selection criterion,
which we detail in Sec. 5.3. Algorithms might differ in the
type of selection criterion we employ. Fourth, we adjust
the metric on the bundle space, which affects both nearest
neighbors computation and the steering method, as we detail
in Sec. 5.2. While different metrics are possible (Orthey et al.
2018), we use the intrinsic bundle metric for all algorithms
(as determined by our meta-analysis in Appendix C).

6.2 QRRT
In Alg. 5, we show the QRRT algorithm. We previously
introduced QRRT in Orthey and Toussaint (2019). We
differ here by using an exponential importance primitive
(Sec. 5.3.2) and by adding the find section primitive
(Sec. 5.4). The remaining structure, however, remains
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Algorithm 5 GROWQRRT(Xk)

1: xrand ← RESTRICTIONSAMPLING(Xk)
2: xnear ← NEAREST(xrand,Gk)
3: xnew ← STEER(xnear, xrand,Gk)
4: if ¬CHECKMOTION(xnear, xrand) then
5: return
6: end if
7: Gk = Gk ∪ {xnear, xnew}

Algorithm 6 GROWQRRT*(Xk)

1: GROWQRRT(Xk)
2: x1:K ← K-NEARESTNEIGHBORS(xnew,Gk,Gk−1)
3: for xnbh ∈ x1:K do
4: REWIRE(xnbh, xnew)
5: end for
6: for xnbh ∈ x1:K do
7: REWIRE(xnew, xnbh)
8: end for

Algorithm 7 REWIRE(x, y)

1: if CHECKMOTION(x,y) then
2: c← COST(x, y)
3: if COST(x) + c < COST(y) then
4: UPDATETREE(y, x,Gk)
5: end if
6: end if

Algorithm 8 GROWQMP(Xk)

1: xrand ← RESTRICTIONSAMPLING(Xk)
2: if ¬ISVALID(xrand) then return
3: end if
4: Gk = Gk ∪ {xrand}
5: x1:K ← K-NEARESTNEIGHBORS(xrand,Gk,Gk−1)
6: for xnbh ∈ x1:K do
7: xnew ← STEER(xnbh, xrand,Gk)
8: Gk = Gk ∪ {xnbh, xnew}
9: end for

unchanged. In detail, we sample a random element from the
bundle space (Line 5.1) using restriction sampling (Sec. 5.1).
We then choose the nearest vertex from the tree (Line 5.2)
and steer from the nearest to the random element (Line 5.3).
We then check if the motion is collision-free and add the
new state to the tree. Note that we stop steering if the
distance goes above a threshold, similar to RRT (LaValle and
Kuffner Jr 2001).

6.3 QRRT*
While QRRT performs well in our evaluations, we
can improve upon QRRT by developing an asymptotic
optimal version. We call this QRRT* and depict the
algorithm in Alg. 6. By developing QRRT*, we generalize
RRT* (Karaman and Frazzoli 2011) to multiple levels of
abstraction. To implement QRRT*, we use one iteration of
QRRT (Line 6.1), then compute k nearest neighbors of the
new state (Line 6.2). We choose the k as k = kRRT log(N)
whereby N is the number of vertices in the tree (Karaman

and Frazzoli 2011). The parameter kRRT can be chosen based
on the dimension of the problem (Karaman and Frazzoli
2011; Kleinbort et al. 2019).

After computing k nearest neighbors, we perform two
rewire operations (this dicussion follows closely Salzman
and Halperin (2016)). First, we rewire the nearest neighbors
to the new state (Line 5.4). Second, we rewire the new state
to the nearest neighbors (Line 5.7). We show the rewire
operation in Alg. 7. Inside the rewire algorithm, we update
the incoming edge of state y by checking if the cost to come
from state x (cost from initial state to x) plus the cost to
go from x to y is smaller than the cost to come for state y.
In that case, we update the graph by removing all incoming
edges into y and adding a directed edge from x to y. Contrary
to similar implementations (Karaman and Frazzoli 2011;
Salzman and Halperin 2016), we also update the tree Gk

such that we can use the same restriction sampling method
for each algorithm. While the grow method is similar to
the RRT* method (Salzman and Halperin 2016), we note
that much of the complexity is encapsulated in the primitive
methods (Sec. 5), which we use to sample, to compute
distances, to find sections and to choose a bundle space to
grow next.

6.4 QMP

In Alg. 8, we show the QMP algorithm, which we introduced
in Orthey et al. (2018). In the QMP algorithm, we differ
from QRRT by not growing a tree, but a graph (Kavraki
et al. 1996). QMP generalizes PRM in the sense that QMP
becomes equivalent to PRM when we choose a single-level
abstraction. The algorithm QMP as presented here differs
slightly from its original conception (Orthey et al. 2018) in
three points. First, we use the epsilon greedy importance
(Sec. 5.3.2) instead of uniform importance to select a bundle
space to expand. Second, we use the intrinsic bundle metric
(Sec. 5.2) instead of the quotient space metric, which we
found to not scale well to high-dimensional state spaces (see
Appendix C). Third, we use the FINDSECTION method to
quickly check for sections (Sec. 5.4).

6.5 QMP*

QMP* is similar as QMP, but we use a different k in each
iteration to chose the nearest neighbors. This k is chosen such
that the resulting algorithm is almost-surely asymptotically
optimal (Karaman and Frazzoli 2011). In general we use
k = kPRM log(N) with N being the number of vertices in
the graph. See also Solovey and Kleinbort (2020) for recent
developments on choosing the parameter kPRM.

6.6 Open Source Implementation

To make the algorithms freely available, we provide
implementations in C/C++, which we split into two
frameworks. The first framework is a graphical user interface
(GUI) where users can specify fiber bundles by providing
URDF (Unified Robotic Description Format) files for each
level and specify the bundle structure in an XML (Extensible
Markup Language) file. We then provide functionalities to
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step through each level and to visualize the lowest-cost path
on each level. The code is freely available on github∗.

The second framework is the actual implementation of
fiber bundles, bundle algorithms, and primitives, which we
implement as a submodule of the Open Motion Planning
Library (OMPL) (Şucan and Kavraki 2009). In particular, we
encapsulate our code as an OMPL planner class, which we
can use for benchmarking (Moll et al. 2015) or analysis. This
code is part of OMPL version 1.6.0 and includes a high-level
introduction, a tutorial, and additional demos†.

7 Analysis of Bundle Planners

Let XK
πK−1−−−→ . . .

π1−→ X1 be a fiber bundle sequence.
We like to prove that, on this fiber bundle sequence,
the algorithms QRRT, QRRT*, QMP, and QMP* are
probabilistically complete (PC) and that QRRT* and QMP*
are asymptotically optimal (AO).

To prove those properties, we use two methods. First,
we state three assumptions on the importance function
and the datastructures, which we use to establish that
restriction sampling is dense. Second, we argue that the
bundle algorithms, when using restriction sampling, inherit
the PC and AO properties from their single-level counterpart.

7.1 Assumptions
We require three assumptions to hold true.

1. The importance function of each bundle space
(Sec. 5.3) monotonically converges to zero (we select
every bundle space infinitely many times)

2. Restriction sampling is dense in X1

3. If restriction sampling is dense, the graph on the k-th
bundle space is space filling in the connected initial
component

whereby the connected initial component is the set of
points in Xk which are path-connected‡ to πk(xI), i.e. to
the projection of the initial state onto the k-th bundle space.
A graph is said to be space-filling in a set U , if for any x in U
there exists a path in the graph starting at xI and converges
to x (Kuffner and LaValle 2011) (in the limit when running
time goes to infinity).

7.2 Proof that Restriction Sampling is Dense
When stripping down to the essentials, we observe that the
bundle planners differ on the last level from non-multilevel
planners by replacing uniform sampling with restriction
sampling. While uniform sampling is dense in the complete
state space, restriction sampling differs, in that we can prove
it to be dense in the connected initial component.

To prove denseness, we need some notations. First, a set
U is dense in X if the intersection of U with any non-
empty open subset V of X is non-empty (Munkres 2000).
We abbreviate this by saying that a set is dense if its closure
cl(U), the smallest closed set containing U , contains the
space X . When using a sequence of samples α1, α2, . . ., we
can interpret the sequence as a setA = {αi | i ∈ N}. We can
then say that the sequence is dense in the space X if the
closure cl(A) contains X (or is equal to).

Let Ik be the connected initial component(on the bundle
space k) and let Ak be a restriction sampling sequence. To
prove Ak to be dense in Ik, we choose an arbitrary set U in
Ik. We then prove that there will be a non-empty intersection
of U with Ak, i.e. given enough time, we will at least sample
once from U . Our proof is inductive, i.e. we prove it to be
true for k = 1, then use this to inductively argue for arbitrary
k.

In a preliminary version of the proof (Orthey and Toussaint
2019), we showed restriction sampling to be dense in the free
state space, which is true only if there is a single connected
component. To make the proof more general, we replace the
free state space here with the connected initial component.

Theorem 1. Ak is dense in Ik for k ≥ 1.

Proof. By induction for k = 1, A1 is dense in X1 by
assumption and therefore dense in I1 since I1 ⊆ X1. For the
induction step, we can assume Ak−1 to be dense in Ik−1.
Let U be a non-empty open subset of Ik. Since U is open,
πk−1(U) is open (by property of fiber bundle). By induction
assumption there exists a y in Ak−1 ∩ πk−1(U). Consider
an open set V of the preimage π−1k−1(y). Since Ak is dense
in π−1k−1(Ak−1) (by definition of restriction sampling), there
exists an x in Ak ∩ V which is a subset of U . Since U was
arbitrary, Ak is dense in Ik.

Due to Theorem 1, we observe that restriction sampling
differs from uniform sampling by removing states which
cannot be feasible. Therefore, algorithms using restriction
sampling maintain all their properties, which we can inherit.

7.3 Inheritance of Probabilistic Completeness
A motion planning algorithm is probabilistically complete,
if the probability that the algorithm will find a path (if one
exists) goes to one as time goes to infinity. This property has
been proven for sampling-based planners, in the case of a
graph (Svestka 1996) including the case of a tree (Kuffner
and LaValle 2000).

Probabilistic completeness follows in our case directly
from the assumptions and our proof that restriction sampling
is dense. In particular, let us assume a given motion planning
problem to be feasible and containing a solution in the
interior of the free space. Since restriction sampling is dense,
by assumption, we have a space-filling graph containing a
path starting at the initial state and converging to the goal
state.

In the grow functions of QRRT, QRRT*, QMP and QMP*,
we directly implement the corresponding versions of RRT,
RRT*, PRM and PRM*, which all have been shown to be
probabilistically complete (see corresponding papers listed
in Tab. 1). They therefore necessarily need to construct a
space-filling graph (tree) (Kuffner and LaValle 2011) and
all bundle space planners, when using restriction sampling,
inherit the probabilistic completeness property.

∗https://github.com/aorthey/MotionExplorer
†https://ompl.kavrakilab.org/multiLevelPlanning.
html
‡We say that two states are path-connected if there exists a continuous path
connecting them.
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7.4 Inheritance of Asymptotical Optimality
An algorithm is (almost surely) asymptotically (near-)
optimal (AnO) (Karaman and Frazzoli 2011; Salzman and
Halperin 2016) if it converges to a cost at most (1 + ε) times
the cost of the optimal path. An algorithm is (almost surely)
asymptotically optimal if it is AnO with ε = 0.

Similar to probabilistic completeness, we argue that
QRRT* and QMP* are asymptotically optimal, since this
property is inherited from RRT* and PRM* (Karaman
and Frazzoli 2011), respectively. This is true, since on
the last level, we only change the sampling function from
uniform to restriction sampling. Since we showed restriction
sampling to be dense and we will select the last bundle
space infinitely many times, we can be sure that the
optimality properties are kept intact. Note that this line of
reasoning is slightly different from the proof of asymptotic
optimality for HBFMT (Reid et al. 2020), where Reid
et al. (2020) define a probability l with which they switch
to use uniform sampling, thereby guaranteeing optimality
by actually reverting to BFMT. We, however, rely on the
denseness property of restriction sampling, thereby avoiding
an uniform extension step.

Detailed proofs of asymptotic optimality for sampling-
based planner can be found in Karaman and Frazzoli (2011).
See also Salzman and Halperin (2016) and Solovey and
Kleinbort (2020) for a treatise of asymptotic near-optimality.

8 Evaluation
To show the wide applicability of fiber bundles and bundle
algorithms, we apply them to a broad range of planning
scenarios. In particular, we evaluate our algorithms on
four low-dimensional and eight high-dimensional planning
scenarios, including computer animation, pre-grasping,
multi-robot coordination, and non-holonomic constraints.
The dimensionality of the state spaces in the high-
dimensional case ranges from 21-dof (box folding) to 100-
dof (hypercube). We compare our algorithms with available
algorithms implemented in the Open Motion Planning
Library (OMPL) as of May 2020 (Moll et al. 2015).
References and details of those algorithms are shown in
Tab. 1. All algorithms, except QMP, QMP*, QRRT, and
QRRT*, do not use the additional information which fiber
bundles provide. We like to show that fiber bundles are
helpful to solve scenarios which are near unsolvable using
classical sampling-based methods Kavraki et al. (1996);
Kuffner and LaValle (2000)
Evaluation Metrics. For all scenarios, we let each algorithm
run 10 times with a cut-off time limit of 60s. For the low-
dimensional scenarios, we report a success-cost plot showing
convergence rate and success rate over time. In this case, we
let the algorithms run for 60s and query their current best
cost with a 100Hz update frequency (i.e. every 0.01s). For the
high-dimensional scenarios, we run two separate evaluations.
First, a pure runtime evaluation, where we compare the
average runtime on each scenario, comparing against all
available OMPL planners. In this case, planners run until
they either find a solution or the cut-off time limit has been
reached. Second, we report on a success-cost plot for our
algorithms against four well performing algorithms from
OMPL, namely RRTConnect, RRT*, BIT*, and LBTRRT. In

this case, all algorithms are run for 60s with best cost queries
at 100 Hz update frequency.
Hardware. Concerning hardware, we use a 4-core laptop
running Ubuntu 18.04 with 20GB of RAM to run the runtime
evaluation on the high-dimensional planning problems. For
the low-dimensional planning problems and the cost function
evaluation on the high-dimensional problems, we use a
4-core laptop running Ubuntu 16.04 with 8GB of RAM.
Concerning parameters, our algorithms are set as follows.
For the FINDSECTION method, we use dMAX = 3 and
bMAX = 10. For path restriction sampling, we use the decay
constant λ = 1× 10−3 and fixed probability βfixed = 0.1.
For QRRT, we use a maximal distance range of 0.2µ
whereby µ is the measure of the space (same value as in
RRT or RRTConnect). For QMP, we use k = 10 to compute
nearest neighbors (same as in PRM). For QMP*, we use
the optimal number of nearest neighbors in each iteration
as in PRM* (Solovey and Kleinbort 2020). The choice of
primitive methods has been independently optimized using a
meta analysis (See Appendix C). We set any other parameters
to be equivalent to the corresponding single-level planner.
State Spaces. In all scenarios, the state spaces of the robots
are modelled using the following mathematical spaces. For
rigid bodies, we use SE(2) and SE(3), the special Euclidean
group in two and three dimensions, respectively (Selig
2004). The spaces in those groups model all rotations and
translations applicable to a rigid body in two or three
dimensions. For rotating joints, we use SO(2) and SO(3),
the special orthogonal group. The spaces in those groups
model all rotations about a fixed point of the robot. For all
other kinematic chains with rotational joints and joint limits,
we use the Euclidean space Rn of n dimensions.

8.1 Low-dimensional motion planning
In the low-dimensional motion planning evaluation, we eval-
uate QMP, QMP*, QRRT, and QRRT* against RRTConnect,
RRT*, BIT*, and LBTRRT. This is done on four low-
dimensional planning problems as shown in Fig. 6. We let
all planners run until time out and collect both time to find
the first solution and solution cost over time.

8.1.1 2-dof Disk problem (2 levels) The first scenario is
a 2-dof disk problem, where a small disk robot needs to
traverse a square with a narrow passage in the middle. For
our bundle algorithms, we use a projection onto a smaller
inscribed disk with half the radius of the original disk (see
Fig. 6). This creates a fiber bundle as

R2 → R2. (14)

The evaluation results are shown in Fig. 5 (Upper left).
RRTConnect performs best in terms of quickest convergence
to one hundred percent success rate, while BIT* performs
best by converging the fastest to the optimal solution. All
bundle planners can successfully solve this problem with
competitive results both in terms of success rate (QRRT,
QMP), and in terms of cost convergence (QRRT*, QMP*).

8.1.2 3-dof Piano Mover’s problem (2 levels) The second
scenario is the piano mover’s problem (Schwartz and Sharir
1983), where a piano has to be moved on a planar floor from
one side of a house to the other side. As shown in Fig. 6, we
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Figure 5. Success-cost plots of the four low-dimensional planning scenarios.

impose a fiber bundle by inscribing a simpler shape into the
original piano, thus imposing a fiber bundle as

SE(2)→ SE(2). (15)

The evaluation results are shown in Fig. 5 (Upper right).
BIT* and RRTConnect outperform in terms of success
rate, while BIT* also converges quickest to a low-cost
solution. All bundle planners perform slightly worse, but still
competitive in terms of runtime and cost convergence.

8.1.3 7-dof Planar Manipulator (4 levels) In the third
scenario, we evaluate the planners on a 7-dof planar
manipulator task, as shown in Fig. 6 (Lower left). For this
scenario, we impose four levels of abstractions, where we
first project the 7-dof robot onto a 4-dof robot by removing
the last three links. We then project onto a 2-dof robot by
removing two links and finally we project onto a 1-dof robot
by removing one link. The resulting fiber bundle can be
written as

SO(2)× R6 → SO(2)× R3

→ SO(2)× R1 → SO(2).
(16)

The evaluation results in Fig. 5 (Lower left) show that
RRTConnect and LBTRRT perform best in terms of success

rate, while LBTRRT converges quickest in terms of solution
cost. Both QMP and QMP* perform competitively in terms
of success rate and QMP* terms of cost convergence. QRRT
has slightly worse performance in terms of success rate, but
still solves the problem. QRRT*, however, does not solve all
runs of this problem.

8.1.4 6-dof Drone (2 levels) In the fourth scenario, a
drone has to traverse two trees to reach a goal state. The state
space is SE(3) with additional constraints on roll and pitch,
but not yaw (to prevent impossible maneuvers). We impose
a fiber bundle as

SE(3)→ R3, (17)

by inscribing a small sphere inside the drone, thereby
reducing the state space to R3. The evaluation results
in Fig. 5 (Lower right) show RRTConnect to converge
quickest in success rate, with LBTRRT being fastest in cost
convergence. All bundle planners solve this problem, but
QMP* returns a slightly larger final cost compared to the
lowest cost found.

8.2 High-dimensional motion planning
For the high-dimensional planning scenarios, we conduct
two evaluations. First, we run a large set of planners from
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(a) 02D disk (b) 06D Piano Mover’s problem

(c) 07D Planar Manipulator (d) 06D Double L-Shape

Figure 6. Four scenarios for low-dimensional planning. Start configuration of robot (green) is shown alongside goal configuration
(red) when applicable. In each figure, the robot is shown on the original space (left), and with the first projection applied (right),
where the original robot is shown with a transparent color.

OMPL until a first solution is found (or a timeout occurs)
and report on the runtime. Those results are evaluated for
all available planners in OMPL, if they are applicable to the
problem at hand. This case is discussed in Sec. 8.2.1 up to
Sec. 8.2.8. Second, we run the eight planners QMP, QMP*,
QRRT, QRRT*, RRTConnect, RRT*, BIT*, and LBTRRT
on each scenario until the timeout occurs. We collect both
success rate and cost over time and plot those results as
success-cost graphs. This case is discussed in Sec. 8.3. Note
that each case uses a different hardware setup as mentioned
in Sec. 8.

8.2.1 100-dof Hypercube (98 levels) The hypercube
(Gipson et al. 2013) is a classical motion planning
benchmark, where we need to move a point robot in an n-
dimensional cubeX = [0, 1]n from xI = (0, . . . , 0) to xG =
(1, . . . , 1). We allow the robot to move only along corridors
of size ε = 0.1 along the edges of the cube as shown in
Fig. 8a. For more details see Gipson et al. (2013). As a fiber
bundle, we choose the sequence of reductions

[0, 1]n → [0, 1]n−1 → . . .→ [0, 1]2 (18)

where the constraint function is the constraint function of the
corresponding cube.

Prior work showed solutions to 25-dimensional cubes in
around 100s (Gipson et al. 2013). Here, we attempt to solve
a 100-dimensional cube version. The benchmarks are shown
in Fig. 8b. All bundle planners have an average runtime
of less than 0.1s. Also the non-bundle planner SPARS2
terminates with a runtime of around 0.2s. However, we note
that SPARS2 terminates with a probabilistic infeasibility
proof, i.e. they declare this problem infeasible. Only QRRT,
QMP and their star versions can solve this problem in the
time limit given. While we terminate all planner at 60s, we
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Figure 7. Hypercube scenario comparison of algorithms
STRIDE and QRRT.

can provide a rough estimate of performance improvement
of QRRT compared to STRIDE (which outperforms PRM,
KPIECE, EST and RRT (Gipson et al. 2013)). To do that, we
let STRIDE run on the n = {3, . . . , 9} dimensional version
of the cube, then we extrapolate the results by fitting a cubic
curve (see Fig. 7). Comparing the extrapolation to QRRT at
the dimension 100, we observe that QRRT performs around
6 orders of magnitude better than STRIDE.

8.2.2 21-dof Box folding (5 levels) To automate deliveries
or assemble production pieces, we often need to compute
folding motions. Here we concentrate on computing the
folding motion of a small packaging box with 21-dof
(Fig. 8c). Such problems are challenging, because parts of
the box have to fit into small narrow passages, which is
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challenging for sampling-based planners. We use a fiber
bundle sequence as

SE(2)× R18 → SE(2)× R16 → SE(2)× R13

→ SE(2)× R10 → SE(2)× R7

→ SE(2)

(19)

which corresponds to the removal of (1) flaps on lid, (2) lid,
(3) right side, (4) left side, (5) back/front elements. We show
the benchmarks in Fig. 8d. The best performing algorithm is
QMP with 0.68s of planning time. QRRT performs worse
with around 6.4s. We discuss this performance difference
in Sec. 9. Both QMP and QRRT together with QMP*
outperform all other planning algorithms, i.e. no OMPL
algorithm was able to solve this scenario in our timelimit.

8.2.3 24-dof Dubins Cars crossing (3 levels) With
several companies pushing towards autonomous driving, we
need increasingly more efficient algorithms to coordinate
multiple car-like robots under non-holonomic constraints.
We concentrate here on the problem of planning motions
for eight Dubins cars (Dubins 1957), which are cars with
constant forward speed, which we can steer left or right.
The cars start on different ends of a crossroad (in reverse
direction) and we need them to cross the road while avoiding
each other (Fig. 8e). We impose a fiber bundle as

SE(2)8 → (R2)8 → (R2)4 (20)

which corresponds to the reduction onto a disk inscribed in
the car and the removal of the upper four robots, respectively.
We show the benchmark in Fig. 8f. QRRT performs best with
a planning time of 0.28s closely followed by QRRT* (0.29s)
and QMP (1.77s). QMP* performs less well with 12.41s of
planning time. Except EST with planning time of around
54s, there was no non-bundle algorithm able to solve this
coordination problem in the timelimit given.

8.2.4 30-dof airport (15 levels) While coordinating
motions for multiple cars are essential for traffic coordina-
tion, we often need to coordinate multiple vehicles in 3D
under non-holonomic constraints. One particular instance
of this problem is an airport, in which we might need to
coordinate cars, planes and zeppelins, each with different
state spaces and different possible nonholonomic constraints.
Here, we use a scenario with 3 trucks, 1 zeppelin, 1 propeller
plane, 1 airplane while taxiing§ and 2 airplanes while flying
(see Fig. 8g). This scenario is particularly challenging, since
all vehicles have non-holonomic constraints except the zep-
pelin. We model the dynamics of the trucks and the planes
as Dubins car and Dubins airplane (LaValle 2006), respec-
tively. Note that arbitrary dynamically constraints could
be imposed, but there are implementations of Dubins car
and airplane spaces available in OMPL, which makes them
also useable with other algorithms in the library. We use a

prioritization-like abstraction as

SE(2)4 × SE(3)× (R3 × SO(2))3 →
R2 × SE(2)3 × SE(3)× (R3 × SO(2))3 →

SE(2)3 × SE(3)× (R3 × SO(2))3 →
R2 × SE(2)2 × SE(3)× (R3 × SO(2))3 →

SE(2)2 × SE(3)× (R3 × SO(2))3 →
R2 × SE(2)× SE(3)× (R3 × SO(2))3 →

SE(2)× SE(3)× (R3 × SO(2))3 →
R2 × SE(3)× (R3 × SO(2))3 →

SE(3)× (R3 × SO(2))3 →
(R3 × SO(2))3 →

R3 × (R3 × SO(2))2 →
(R3 × SO(2))2 →

R3 × (R3 × SO(2))→
(R3 × SO(2))→

R3

(21)

where the first four SE(2) spaces represent the three
trucks and the taxiing airplane. The SE(3) space represents
the zeppelin and the remaining 3 spaces of R3 × SO(2)
represent the two flying airplanes and the propeller plane,
respectively. Each projection either projects an SE(2) space
by using the simpler robots of a nested disk, by removing
a robot completely (and its geometry) or by nesting an
inscribed sphere. The benchmarks are shown in Fig. 8h. The
best performing planner are QRRT (0.52s), QMP (0.99s) and
QMP* (0.94s). QRRT* performs significantly worse with a
planning time of around 58s, which suggest that it could not
completely solve this problem in the time allocated. Besides
the bundle planner, we also observe that RRTConnect shows
competitive results with 4.5s of planning time.

8.2.5 37-dof pregrasp (3 levels) Manipulation of objects
is a challenging task for robots (Dafle et al. 2018; Driess
et al. 2020), in particular if we have to deal with realistic
hands with many dofs. We concentrate here on computing
a pregrasp for a 37-dof shadow-hand robot mounted on a
KUKA LWR robot. We define the problem as finding a
pregrasp for the grasping of a small glass, as we depict in
Fig. 9a. We impose a fiber bundle as

R31 → R18 → R13 (22)

which corresponds to a reduction by first removing all fingers
except thumb and index finger and second removing the
thumb. The benchmark for this problem are shown in Fig. 9b.
Both QMP and QMP* perform best with around 6.81s and
12.36s of planning time. In this scenario, no non-bundle
planner can solve this problem. Please note that the planner
QRRT and QRRT* perform around 44s and 48s. We discuss
this performance further in Sec. 9.

§Taxiing refers to movements of an airplane on the ground, for example
after landing or before take-off.
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8.2.6 48-dof drones (8 levels) Planning motions for
multiple quadrotors (Hönig et al. 2018) is essential for drone
delivery, in disaster response scenarios and for entertainment
purposes. We consider here the problem of coordinating the
motion of eight drones which have to traverse a small forest-
like environment as shown in Fig. 9c. We use the fiber bundle

SE(3)8 → SE(3)7 → · · · → SE(3), (23)

which corresponds to a prioritization of the drones, i.e. in
each projection we remove one robot. The benchmarks are
shown in Fig. 9d. While the best algorithm is QRRT (0.14s)
closely followed by QMP (0.15s) and QMP* (0.16s), we
observe that also RRTConnect and BFMT show competitive
performances with 0.59s and 6.05s, respectively.

8.2.7 54-dof Kraken animation (17 levels) Computer
animation is an important application of planning algorithms
(Plaku et al. 2018). In animations for movies, an animator
would probably insert keyframes to guide the planning of
motions. However, if we like to compute animations online,
for example for a computer game, we require fast planning
algorithms.

We show here the problem of animating a 54-dof Kraken-
like robot (see Fig. 9e), which has to wrap its arms around a
sailing ship. We use a fiber bundle reduction as

SE(3)× R48 → SE(3)× R45 → SE(3)× R42

→ . . .→
SE(3)× R6 → SE(3)× R3 → SE(3)

(24)

which corresponds to the removal of each arm (6-dof
revolute joints) on each stage, whereby we first remove
the last three links (removal of 3-dof) and then remove
the remaining arm (3-dof). We show the benchmark in
Fig. 9f. We observe that both QRRT (0.20s) and QMP (0.23s)
perform below 1s to find a feasible solution. Next comes
QMP* with a planning time of 6.21s. The next best non-
bundle planner is BiTRRT with a performance of around 22s
planning time. The performance of the bundle planner QRRT
is thus two orders of magnitude better than the next best non-
bundle planner.

8.2.8 72-dof manipulators (3 levels) When automating
construction work (Hartmann et al. 2020) or warehouse
operations (Salzman and Stern 2020; Eppner et al.
2016), we often need to coordinate multiple robots with
many dofs. Here, we consider the coordination of eight
KUKA manipulators on disk-shaped mobile bases. Each
manipulator starts around a circle and needs to change
position with its antipodal partner (see Fig. 9g). We impose
a fiber bundle as

(SE(2)× R6)8 → (R2)8 → (R2)4 (25)

which corresponds to the removal of arms and the removal
of the upper half of the robots. The benchmarks are shown
in Fig. 9h. We observe that QRRT solves this problem
in 3.65s while QRRT* requires 19s. Only one non-bundle
planner is able to terminate on average before the timelimit:
RRTConnect with around 39s seconds of planning time. Note
that this problem is difficult for QMP (57s) and QMP* (50s)
which perform worse than RRTConnect.

8.3 Cost Analysis of High-Dimensional
Scenarios

So far, planners have been evaluated with respect to runtime.
To also evaluate the cost convergence property, we compare
both QRRT* and QMP* on all eight high-dimensional
scenarios to QMP, QRRT, BIT*, RRT*, LBTRRT, and
RRTConnect. The results are shown in Fig. 10.

Let us detail the performance of each algorithm class.
First, the non-bundle space planners are only able to tackle
two out of eight scenarios. RRTConnect is able to solve
the airport and the drones scenario by quickly converging
to 100% success rate. In the drones scenario, RRTConnect
also finds good, low-cost solutions before any other planner
has even found a single solution. However, apart from
RRTConnect, the planners RRT*, BIT*, and LBTRRT are
not applicable to any of the scenarios with no solved run
during the time budget given.

Second, the bundle space planners QMP, QMP*, QRRT,
and QRRT* are able to tackle all eight scenarios. For the
hypercube, QMP, QRRT, and QRRT* quickly find a solution,
but are not able to improve upon it. QMP* finds a solution
slightly later, but is able to continuously improve upon it.
In the box folding task, QMP* is able to solve 90% of
the cases while converging quickly to a low-cost solution.
Both QRRT and QMP have lower success rates, but find on
average a low-cost solution. QRRT*, however, is not able to
adequately solve this problem with a success rate of 10%. For
the crossing cars scenario, all bundle planners reach 100%
success rate with both QRRT* and QMP* converging to
low-cost solutions over time. For the airport scenario, QRRT
and QMP reach 100% success rate, while both QRRT* and
QMP* reach only 80% and 30%, respectively. In terms of
cost convergence, QMP* is not able to improve the initial
solution cost and has a large cost variance as indicated by the
large shaded region around the average cost.

In the Shadowhand scenario, QMP, and QMP* reach
90% and 70% success rate, while QRRT, and QRRT* reach
only 40% and 20%. While QMP* is able to improve the
solutions slightly, it has a large variance around the average
cost. For the drones scenarios, both QMP and QMP* reach
100% with QMP* converging over time to good low-cost
solutions. QRRT is competitive with 90% success rate and
low cost average solution as indicated by the cross in the
cost plot. However, QRRT* is only able to solve 10%
of the runs. For the octopus scenario, QMP, QMP*, and
QRRT reach 100% success rate, while QRRT* only reaches
20%. QMP* shows quick, and low-variance convergence
to an optimal solution. Finally, in the mobile manipulators
scenario, QRRT* and QRRT reach 90% success rate, while
QMP* reaches 20% and QMP fails to find any solutions.
QRRT* is also able to converge quickly over time, reaching a
solution cost significantly below solution costs from QRRT,
and RRTConnect.

9 Discussion
From the preceding evaluation section, we have supporting
evidence to draw three broad conclusions. First, it is difficult
to solve high-dimensional planning problems with classical
(non-bundle) motion planning algorithms. This should not
be surprising, since the problem is known to be NP-hard
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Motion Planning Algorithm Origin Paper FB PC AnO
QRRT Rapidly-exploring random quotient space trees (Orthey and Toussaint 2019) x x
QMP Quotient-space roadmap planner (Orthey et al. 2018) x x

QRRT* Optimal version of QRRT this paper x x x
QMP* Optimal version of QMP this paper x x x
PRM Probabilistic Roadmap Planner (Kavraki et al. 1996) x

PRM* Optimal version of PRM (Karaman and Frazzoli 2011) x
LazyPRM* Optimal version of LazyPRM (Karaman and Frazzoli 2011) x

SPARS Sparse roadmap spanners (Dobson and Bekris 2014) x x
SPARS2 SPARS without dense graph (Dobson and Bekris 2014) x x

RRT Rapidly-exploring random tree (Lavalle 1998) x
RRTConnect Bidirectional RRT (Kuffner and LaValle 2000) x

RRT* Optimal version of RRT (Karaman and Frazzoli 2011) x
LazyRRT Lazy edge evaluation RRT (Kuffner and LaValle 2000) x

TRRT Transition-based RRT (Jaillet et al. 2010) x
BiTRRT Bidirectional TRRT (Jaillet et al. 2010) x
LBTRRT Lower-bound tree RRT (Salzman and Halperin 2016) x x

RRTX RRT with pseudo-optimal tree (Otte and Frazzoli 2016) x x
RRT# RRT sharp (Arslan and Tsiotras 2013) x x

InformedRRT* Informed search RRT* (Gammell et al. 2014) x x
SORRT* Sorted InformedRRT* (Gammell et al. 2014) x x

SBL Single-query bidirectional lazy PRM (Sánchez and Latombe 2003b) x
SST Stable sparse RRT (Li et al. 2016) x x

STRIDE Search Tree with Resolution
Independent Density Estimation

(Gipson et al. 2013) x

FMT Fast marching tree (Janson et al. 2015) x x
BFMT Bidirectional FMT (Janson et al. 2015) x x
BIT* Batch informed trees (Gammell et al. 2020) x x

ABIT* Advanced BIT* (Strub and Gammell 2020) x x
EST Expansive spaces planner (Hsu et al. 1999) x

BiEST Bidirectional EST (Hsu et al. 1999) x
ProjEST Projection EST (Hsu et al. 1999) x
KPIECE Kinodynamic Motion Planning

by Interior-Exterior Cell Exploration
(Şucan and Kavraki 2009) x

BKPIECE Bidirectional KPIECE (Şucan and Kavraki 2009) x
LBKPIECE Lazy BKPIECE (Şucan and Kavraki 2009) x

PDST Path-Directed Subdivision Tree (Ladd and Kavraki 2004) x
Table 1. List of motion planning algorithms used in experimental section. Properties of the algorithms are: Supporting fiber bundles
(FB), being probabilistically complete (PC) and being asymptotically (near-)optimal (AnO).

(Hopcroft et al. 1984; Canny 1988; Solovey 2020) and the
spaces to contain multiple narrow passages (Lozano-Pérez
and Wesley 1979; Salzman et al. 2013).

Second, we can often quickly and reliably solve high-
dimensional planning problems by exploiting fiber bundles.
We believe there are three primary contributing factors.
First, we have expansions of narrow passages. If we project
a narrow passage onto a base space, we often observe
the narrow passage to increase its volume relative to the
surrounding space. We thereby increase our chance to sample
narrow passages on the base space, which we can use to
guide sampling on the total space (Orthey and Toussaint
2019). Second, we have the removal of infeasible preimages.
If we find a point on the base space to be infeasible,
we can remove their preimage from the bundle space,
thereby removing regions which cannot be feasible (Orthey
et al. 2018). Third, we have dedicated methods to exploit
admissible heuristics. If we have a path on the base space,
we can often quickly find solutions using the recursive path
section method or by using path restriction sampling (Zhang

et al. 2009). By staying on the path restriction, we exploit the
information from the base space, similar to how we would
exploit an admissible cost-to-go heuristic in a discrete search
scenario (Pearl 1984; Aine et al. 2016).

Third, the cost analysis showed that bundle space planners
can successfully converge to low-cost solutions in high-
dimensional spaces. However, this seems to only hold true
for QMP*, which outperforms QRRT* in terms of cost
convergence in seven out of eight scenarios, as shown
in Sec. 8.3. QRRT*, however, has inferior performance
compared to QMP* and only outperforms QMP* in the
mobile manipulators scenario. We believe this is due to
QRRT* using tree rewiring, which is an expensive operation.
Instead, QMP* does not rely on such an operation and is
better suited to tackle high-dimensional spaces.

While our evaluation seems to corroborate those
statements, we also like to discuss two limiting issues. The
first issue are evaluation outlier, which seemingly contradict
our statements. We discuss what they are and what we can
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(b) Benchmark of 100-dof hypercube

(c) 21-dof box folding problem
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Figure 8. Runtime benchmarks on the first four high-dimensional planning scenarios.
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(a) 37-dof pre-grasp
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Figure 9. Runtime benchmarks on the last four high-dimensional planning scenarios.
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Figure 10. Success-cost plots of the eight high-dimensional planning scenarios.
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do about them. The second issue is our reliance on pre-
specification of fiber bundles, which we do for this work
manually. We discuss options to automatically specify them
in the future.

9.1 Evaluation Outlier

From the evaluations, we observe that we often can find
solutions over multilevel abstractions quickly and reliably.
However, we observe three noteworthy exceptions. First, we
observe that QRRT performs below 3s on every enviroment,
except the 37-dof pregrasp (43s) and the box folding task
(8s). The cost-analysis further shows that QRRT is often
not able to reach the 100% success rate. We believe those
environments to be challenging for QRRT, because they are
examples of ingress problems, i.e. problems where we need
to enter a narrow passage, similar to a Bugtrap (Yershova
et al. 2005). Such problems could be overcome in future
work by developing a bidirectional version of QRRT, by
using biased sampling towards narrow passages (Yang and
Lavalle 2004), or by selectively expanding states at the
frontier of the tree (Yershova et al. 2005; Denny et al. 2020).

Second, we observe QRRT* to perform worse by an
order of magnitude compared to QRRT on five out of eight
environments. The cost analysis corroborate this observation
by showing that QRRT* performs worse in cost convergence
on seven out of eight environments when compared against
QMP*. We believe the rewiring of the tree in Alg. 6 slows
down planning over multilevel abstractions. In the future,
we could overcome this by either postpone rewiring of the
tree until a solution is found or by exploiting informed
sets (Gammell et al. 2014), which are admissible lower
bounds on the optimal solution. It could also be fruitful to
investigate the connection between quotient space metrics
and the geometric shape of informed sets, which we could
use as admissible heuristics (Gammell et al. 2020).

Third, we observe that the non-bundle planner RRTCon-
nect performs competitively on the 30-dof airport and the 48-
dof drones environment. Also BFMT performs competitively
on 48-dof drones. It seems, we could solve both problems
without using fiber bundles. We believe this to happen
because both scenarios involve SE(3) state spaces, where
narrow passages might be rarer than in SE(2) scenarios.
In those environments, we therefore have enough volume
to quickly find valid samples, which we can exploit using
RRTConnect, or BFMT. However, we believe fiber bundles
are still needed. First, we do not know if RRTConnect or
BFMT would still perform well if we further increase dimen-
sionality. Second, only by using bundle planners can we
consistently and reliably find solutions in all environments.
Third, fiber bundles are often the only option if we want
to rapidly establish infeasibility or organize local minima
over high-dimensional state spaces (Orthey et al. 2020). It
is, however, necessary to investigate how narrow passages
slow down planning and how we could overcome them using
fiber bundles. We previously conducted some evaluations in
that direction for the QRRT planner (Orthey and Toussaint
2019).

9.2 Specifying Fiber Bundles
For each problem, fiber bundles have to be specified
manually. This is problematic, since there is no clear
guideline on how to select fiber bundles for a specific
problem. This could be overcome by optimizing over a
primitive set of fiber bundles. To create a primitive set of fiber
bundles, we could use the largest inscribed sphere for a rigid
body, the removal of links from a chain, or the removal of
nonholonomic constraints from a dynamical system. We can
then search the landscape of such primitive fiber bundles to
find an efficient fiber bundle for a specific robot and a specific
set of environments. A recent study by Brandao and Havoutis
(2020) shows promising results in that direction by using
evolutionary algorithms to select an abstraction. It could
also be promising to use workspace information to select a
fiber bundle (Yoshida 2005), either by choosing joints which
can actuate links of interest through the workspace (Luna
et al. 2020) or by choosing a bundle on-the-fly based on
which links are closest to obstacles (Kim et al. 2015). We
thereby could choose different fiber bundles for large rooms,
for narrow passages or for ingress tasks. However, in those
cases, we would need to consider fiber bundles with changing
dimensions, which are in general given by the concept of a
sheaf (Bredon 2012).

10 Conclusion
We modelled multilevel motion planning problems using
the framework of fiber bundles. To exploit fiber bundles,
we developed a set of bundle primitives, and the bundle
planners QRRT* and QMP*, which we showed to be
probabilistically complete and asymptotically optimal. We
also extended the existing bundle planners QRRT (Orthey
and Toussaint 2019) and QMP (Orthey et al. 2018) using
an exponential importance criterion and a recursive L1 path
section method (Fig. 1). We conducted a meta-analysis
to find the best implementation of the bundle primitives,
including graph sampling, metric, importance selection, and
path section methods. Using the bundle planners, we robustly
and efficiently solved challenging high-dimensional motion
planning problems, from 21-dof to 100-dof. We also showed
competitive results for low-dimensional scenarios, and we
showed QMP* to be superior in cost convergence for high-
dimensional scenarios.

However, we believe there is still room for improvement.
In particular, runtime could be further reduced by developing
a bidirectional version of QRRT (LaValle and Kuffner Jr
2001), by improving convergence using informed sets
(Gammell et al. 2014), by investigating novel path
section optimization methods (Zhang et al. 2009), and by
automatically searching fiber bundles to exploit (Kim et al.
2015; Brandao and Havoutis 2020)—i.e. with respect to a
given bundle algorithm (Orthey and Toussaint 2019). We
also believe it is worthwhile to investigate the connection to
complementary approaches, like computing neighborhoods
(Lacevic and Osmankovic 2020) and exploiting sufficiency
conditions (Grey et al. 2017).

However, despite room for improvements, we showed
that bundle planners can efficiently exploit fiber bundles.
By exploiting fiber bundles, bundle planners outperformed
existing planners often by up to 2 orders of magnitude,
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occasionally up to 6 orders of magnitude. Thus, we believe
to not only have contributed to solving multilevel planning
problems in the now, but also to have contributed tools and
insights to investigate high-dimensional state spaces in the
future.
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Figure 11. Quotient space example. Left: Space R2. Middle:
Quotient space Q = R2/ ∼, the set of equivalence classes of
vertical lines. Right: Representative space R1 under
representation mapping ν : Q→ R1 (Adapted from (Orthey
et al. 2018)).
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A Background Fiber Bundles
Fiber bundles are based upon the concepts of equivalence
relations, and quotient spaces, with close ties to constraint
relaxation, and admissible heuristics. We provide here a short
overview about those concepts.

A.1 Equivalence Relations
An equivalence relation ∼ is a binary relation on a space
X such that for any elements x, y, z ∈ X we have x ∼ x
(reflexive), if x ∼ y then y ∼ x (symmetric) and if x ∼ y and
y ∼ z then x ∼ z (transitive) (Munkres 2000).

An equivalence relation partitions the space X into
disjoint subsets we call equivalence classes (Munkres 2000).
Given an element x in X , the equivalence class of x is the
set of elements [x] = {y | y ∼ x}.

A.2 Quotient Spaces
We often like to simplify a space X under an equivalence
relation ∼ by taking the quotient. Taking the quotient means
that we compute the quotient space Q = X/ ∼ under the
quotient map π : X → Q. The quotient space is the set of all
equivalence classes imposed by∼ onX . To manipulate those
equivalence classes, we can often represent the quotient
space by assigning an equivalence class to a point of a
representative space. We define this representative space as a
space B under a (bijective) representative mapping ν : Q→
B (Lee 2003).

Let us consider an example. In Fig. 11, we show the
plane R2 with elements x = (x1, x2) under the equivalence
relation of vertical lines, i.e. x ∼ x′ if x1 = x′1. An
equivalence class [x] = {x′ | x′ ∼ x} represents a vertical
line, i.e. the set of points in R2 with equivalent x1 value.
Taking the quotient, we obtain the quotient space Q =
R2/ ∼, the set of vertical lines in R2 (Fig. 11 Middle).
We can then represent Q by the representative space R1 by
associating to each equivalence class (vertical line) the real
value x1 using the representative mapping ν : Q→ R1 we
define as ν([x]) = x1 (Fig. 11 Right).
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A.3 Constraint Relaxation
To approximate a complex problem, we can often use the
concept of constraint relaxation. Let X be a space and
φ : X → R be a constraint function on X . To solve a
planning problem on X , we need to search through the free
space Xf, which might have zero-measure constraints or
narrow passages. To simplify such a problem, we replace the
constraint function φ by a constraint relaxation function φR
under the condition

φR(x) ≤ φ(x) (26)

for any x in X .
We can explain this condition geometrically as an

expansion of the free space Xf when using φR (Orthey and
Toussaint 2019). Constraint relaxations (Roubı́ček 2011) are
advantageous, because we can use solutions of the relaxed
problem as certified lower bounds on the solution of the
original problem.

A.4 Admissible Heuristics
In a search problem, we like to find paths through a state
space X to move from an initial element xI ∈ X to a goal
element xG ∈ X . When casting this as a search problem,
we often like to know which state to expand next. A helpful
tool is the cost-to-go (or value) function h∗ : X → R which
defines the cost of the optimal path from any point to the
goal. An admissible heuristic is an estimate h : X → R
which lower-bounds h∗ as

h(x) ≤ h∗(x) (27)

for any x in X (Pearl 1984; Edelkamp and Schroedl
2011; Aine et al. 2016). Admissible heuristics are important
because we can use them to guarantee optimality and
completeness in algorithms like A* (Hart et al. 1968; Pearl
1984) and to often decrease planning time significantly (Aine
et al. 2016).

B Exponential Change
To model quick but smooth transitions between two
parameter values, we use an exponential decay function. Let
κ0 be the start and κ1 be the final parameter value. We model
the change between κ0 and κ1 using the exponential decay
function

κ(t) = (κ0 − κ1) exp(−λt) + κ1 (28)

with t ∈ R≥0 being the time or iteration number, κ(0) = κ0,
limt→∞ κ(t) = κ1, exp being the exponential function and
λ ∈ R≥0 being the decay parameter.

C Meta-Analysis of Primitive Methods
As discussed in Sec. 5, each bundle space primitive can
be implemented in multiple ways. To find out which

method works best for a specific algorithm, we perform a
meta-analysis. In this meta-analysis, we select each bundle
algorithm QRRT, QRRT*, QMP and QMP* and vary its
primitive methods. We vary those methods by taking the
runtime average over the same set of environments as in
Sec. 8 (except the hypercube). We then present the results
as ratios of the best runtime. This means, to find the
best sampling method for QRRT, we let QRRT run on all
environments with different sampling method, then average
the results for each method. We then take the method with the
lowest runtime and assign it the ratio 1. All other runtimes
are represented as multiples of the lowest runtime.

The results are shown in Fig. 12. We divide the results
into four groups. First, we compare the intrinsic metric to the
quotient space (QS) metric (left group). Second, we compare
the importance selection of a bundle space by comparing
uniform, exponential and epsilon greedy (middle left). Third,
we compare the graph sampling strategies, namely random
vertex, random edge and degree vertex (middle right).
Finally, we compare the algorithms with enabled find section
method and without (right).

In the case of QRRT, we observe the best metric to
be the intrinsic metric (left) and that using the recursive
find section method, we can lower the runtime significantly
(right). However, for sampling and selection, we do not have
a clear best strategy. Instead, we observe that a change in
sampling or importance has a marginal influence on the
performance. For the other three algorithms QRRT*, QMP
and QMP*, we observe similar results. One exception is
QRRT*, where we observe the QS metric and the no find
section method to perform only 1.25 times worse.

C.1 Discussion of results
The results indicate that both for sampling and importance
selection, there is no clear advantage of using either
strategy. This suggests that either strategy can be chosen
for the scenarios under investigation. Further investigation
is required to understand the influence of sampling strategies
over different types of bundle spaces.

Concerning the metric and section method, the difference
in performance is significant. In detail, for all bundle
planners, both the intrinsic method, and the find-section
method perform significantly better. The reason why the
intrinsic metric is better lies in its simplicity. While the
intrinsic metric can rapidly return values, the QS metric
requires an expensive graph search. While the QS metric
is more accurate, this is offset by its computational burden.
The reason why the find-section method performs better is
due to independent movements of links caused by the L1-
interpolation. This is often a decisive factor to ensure that
colliding links are moved out of the way to clear the way
towards the goal. Most of the problems in our evaluations
benefit from this movement. An example is the box folding
task, where moving outer links towards the goal positions
increased our chances to find collision-free motions.
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Figure 12. Meta analysis of different implementations of bundle space primitives. Each graph shows the performance of QRRT,
QRRT*, QMP, and QMP* on the high-dimensional benchmark set by comparing four different primitives, the metric (intrinsic vs.
quotient-space), the importance selection (uniform, greedy, or exponential), the sampling strategy (random vertex, random edge,
random degree vertex), and having the side-step section method. See Sec. 5 for details. The results are displayed as ratio
compared to the value of the best performing implementation in each category.
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