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Abstract— We present a motion planner for planning through
space-time with dynamic obstacles, velocity constraints, and
unknown arrival time. Our algorithm, Space-Time RRT* (ST-
RRT*), is a probabilistically complete, bidirectional motion
planning algorithm, which is asymptotically optimal with re-
spect to the shortest arrival time. We experimentally evaluate
ST-RRT* in both abstract (2D disk, 8D disk in cluttered spaces,
and on a narrow passage problem), and simulated robotic path
planning problems (sequential planning of 8DoF mobile robots,
and 7DoF robotic arms). The proposed planner outperforms
RRT-Connect and RRT* on both initial solution time, and
attained final solution cost. The code for ST-RRT* is available
in the Open Motion Planning Library (OMPL).

I. INTRODUCTION

Motion planning is a fundamental challenge in
robotics [1]. In many real-world applications, obstacles
change positions over time and goals are only valid
at specific times. For applications such as multi-robot
assembly, multiple motion scheduling subproblems need to
be solved [2]. Assuming that obstacle trajectories are given
a priori, the subproblems can be modelled as navigation
through dynamic environments. Mathematically, this is
formulated as planning through a space-time state space.

Efficient and optimal planning through space-time raises
three fundamental challenges. First, since goal arrival times
are unknown upfront, it becomes difficult, yet crucial, to
define and adjust the time range in a coordinated and
meaningful way. The second challenge is the representation
of kinodynamic constraints in the planning model. Whether
a movement is possible depends on kinematic parameters,
velocity, and acceleration. Lastly, robots should minimize
arrival time. Arrival time is crucial for long-horizon planning
problems, where optimization of intermediate arrival times
is one of the central challenges [2]. These challenges make
planning through space-time a demanding problem. We are
not aware of any sampling-based method which either op-
erates in unbounded space-time or is asymptotically optimal
with respect to shortest arrival time.

To address those challenges, we develop Space-Time
RRT* (ST-RRT*). The basic operating principle of ST-RRT*
is illustrated in Fig. 1: (a) We compute an initial estimate
of a feasible goal time (blue dashed line), and grow both a
forward tree from the start state (blue), and a set of reverse
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Fig. 1: Four snapshots of ST-RRT* in R1+1 (one space, plus
one time dimension). The forward tree is blue, the backward
trees are red, obstacles are black, and the goal regions are
yellow. (a) Using the initial batch of samples, no solution
was found. (b) The upper bound of the time space (dashed
line) is expanded, more goal nodes are sampled and the trees
are grown. (c) An initial solution is found (orange), and the
upper bound is decreased accordingly. (d) Parts of the trees
that can not contribute to the solution anymore are pruned
(lower opacity), and the final solution after convergence.

trees from the goal regions (red). If no solution is found
given a certain number of samples, the upper time limit in
which we generate samples is increased (b). If a solution
(orange) is found (c), the parts of the trees that can not lead
to an improved solution are pruned. This process continues to
improve the solution path, and tighten the upper time bound
until a termination condition is reached (d).

ST-RRT* is a bidirectional motion planning algorithm that
is probabilistically complete and asymptotically optimal with
respect to shortest arrival time. ST-RRT* is able to operate in
unbounded time spaces and model velocity constraints. ST-
RRT* is inspired by RRT-Connect [3], with three changed
components to attain the stated qualities in space-time. Our
main contributions are:
• Progressive Goal Region Expansion: ST-RRT* grad-

ually increases the sampled time range to efficiently
operate in unbounded time spaces. Simultaneously, we
adjust the sampling densities over the time dimension



to ensure a more uniform sampling distribution.
• Conditional Sampling: We develop a novel sampling

method that prevents the sampling of states which can-
not be part of a solution path due to velocity constraints.

• Simplified Rewiring: To obtain optimal solutions, states
are rewired similar to RRT* [4]. In contrast to RRT*,
we perform a simplified rewiring step, where only nodes
in the set of goal trees are rewired.

We demonstrate our algorithm on both abstract (planning
for a disk in up to R8+1), and simulated robotic motion
planning problems (both robotic arms and mobile robots).

II. RELATED WORK

In the following two sections, we review literature on
planning in dynamic environments and time-optimal path
planning. For an exhaustive discussion of path planning
methods we refer to [5] and [6] for an overview on (asymp-
totically optimal) sampling based path planning methods.

A. Planning in Dynamic environments

Planning in dynamic environments can be roughly divided
in two approaches. First, we have reactive methods, which
work with the assumption that the trajectories of the moving
obstacles are unknown, whereas the second category assumes
full knowledge of the obstacles’ trajectories.

Reactive methods such as Execution-extended RRT [7],
Closed-loop RRT [8], [9], RRTX [10] or Real-time
RRT* [11] are methods specifically developed for rapid
replanning. Rapid replanning is necessary when previously
computed paths become invalid during execution. Risk-
RRT [12] incorporates predictions about the obstacles’ move-
ment, and computes partial motion paths to keep the prob-
ability of a collision under a given threshold. However,
frequent replanning is still needed as only partial paths are
returned. Various methods exist to enable efficient replan-
ning, i.e. to reuse as much prior work as possible from
previously planned paths, or to establish coarse connectivity
of the space, and only replan for dynamic obstacles ([13],
[14], [15], [16]).

Contrary to reactive methods, the following methods as-
sume full knowledge of obstacle trajectories, and thus do
not rely on replanning. Time-Based RRT [17] expands the
configuration state space by the time dimension and plans
unidirectionally to a set of known goal states. However,
knowledge of the specific time for each goal configuration is
assumed, and only unidirectional planning is supported. Safe
Interval Path planning [18] finds optimal paths with respect
to shortest time by constructing a discrete search space with
states defined by their configuration and a corresponding
‘safe interval’. However, a graph needs to be constructed for
the entire state space, and thus it suffers the inherent prob-
lems: it is only feasible for problems with few dimensions.

In this work, we assume full knowledge of all paths of
the moving obstacles, but no a priori knowledge of the
arrival time, as is the case in multi-robot assembly planning
tasks [2]. Thus, our method does not require replanning and
is able to efficiently find feasible and time-optimal paths. Our

method also enables to plan bidirectionally in unbounded
time spaces, leading to a more efficient planner than other
RRT-based planners in the space-time setting.

B. Time-optimal Trajectory planning

A common approach to find kinodynamically feasible
paths is based on path-velocity decomposition: first find
a geometrically feasible path, and then find a valid time-
parametrization for this path [19]. Extensions to this ap-
proach were presented e.g. in [20], which relaxes the quasi-
static requirement. However, this approach is inapplicable
here, as obstacles are dynamic and the time optimization on
a fixed path might render it infeasible.

Other approaches to planning include optimization ap-
proaches (e.g. STOMP [21], or sequential convex optimiza-
tion [22]), or extending the configuration space with velocity
coordinates [23]. Optimization based approaches work well
to incorporate complex constraints, but suffer from the well
known non-convexity of the general planning problem. Fur-
thermore, optimizing for arrival time is not straightforward.
In general, these methods are not complete and therefore can
not achieve global optimality.

Sampling based kinodynamic planning on the other hand,
doubles the dimensionality of the state space we plan in,
and thus makes planning with high DoF-robots slow or even
infeasible. Since time is not taken into account explicitly,
planning with dynamic obstacles is not straightforward.

By extending the configuration space with a time com-
ponent, and planning and optimizing in this space-time
state space, we retain these guarantees. Through usage of
bidirectional planning, conditional sampling, and simplified
rewiring, we achieve a high efficiency.

III. THE SPACE-TIME RRT* ALGORITHM

We consider the motion planning problem in space-time
with unbounded arrival time. Our objective is to minimize
arrival time under given velocity constraints. By adding a
time dimension to the configuration space we obtain the
Space-Time state-space X = Q × T , where Q is the
underlying configuration state space and T is the time state
space. Note that X can be unbounded in time. Let Xfree ∈ X
be the obstacle-free subset of states, xstart the start state, and
Xgoal = Qgoal × Tgoal the goal region. In the following, we
assume full knowledge of the obstacles’ trajectories, and plan
for holonomic robots with a given maximum velocity. We
define vmax ∈ R|Q| as a vector containing the maximum
velocity for each space component.

The goal is to compute a continuous path p : [0, 1] →
Xfree, such that p(0) = xstart, p(1) ∈ Xgoal, and the velocity
constraints are satisfied. We are interested in finding not only
feasible, but paths which minimize the arrival-time, c(p) = t1
with t1 being the time element of p(1) = (q1, t1).

In space-time, the distance that can be covered in a given
time is constrained by vmax and it is not possible to move
backwards in time. Thus, we define our distance function d



Algorithm 1 ST-RRT*

Input: X , xstart,Xgoal, d, PTC, tmax, pgoal, P
1: Ta ← {xstart}; Tb ← ∅
2: B ← INITIALIZEBOUNDVARIABLES(P )
3: while ¬PTC do
4: B ← UPDATEGOALREGION(B,P, tmax)
5: if pgoal ≥ RND(0, 1) then
6: B ← SAMPLEGOAL(xstart,Xgoal, Tgoal, tmax, B)

7: xrand ← SAMPLECONDITIONALLY(xstart,X , B, d)
8: if not EXTEND(Ta, xrand, d) = Trapped then
9: B.samplesInBatch += 1

10: B.totalSamples += 1
11: REWIRETREE(Ta, Tgoal, xnew)
12: if CONNECT(Tb, xnew, d) = Reached then
13: solution← UPDATESOLUTION(xnew)
14: tmax ← COSTPATH(solution)
15: B.batchProbability← 1
16: PRUNETREES(tmax, Ta, Tb)

17: SWAP(Ta, Tb)

18: return solution

between two states, x1 = (q1, t1) and x2 = (q2, t2) as

d(x1, x2)=


λdQ(q1, q2)+(1−λ)(t2−t1),

if t1 < t2, v
i ≤ vimax ∀i ∈ [1, |Q|]

∞, else.
(1)

where dQ is the intrinsic metric of the configuration space,
λ ∈ (0, 1) weights the importance of dQ with respect to
the time-distance (but does not influence optimality), and vi

is the required speed in dimension i, such that q2 can be
reached from q1 in time t2− t1. As d is not symmetric, it is
only a pseudometric.

A. Algorithm
The algorithmic details of ST-RRT* are shown in Algo-

rithms 1–5. In addition to X , xstart, Xgoal, and d it requires
a planner termination condition PTC, a time bound tmax ∈
(0,∞], a probability to sample a new goal pgoal ∈ (0, 1], and
several bound parameters contained in P (see Section III-
A.1). The basic framework is similar to RRT-Connect [3]:
In each iteration a new goal is sampled with probability
pgoal (Line 5 & 6). Then, a random state xrand is sampled
(Line 7). If possible, the current tree Ta is expanded by the
new state xnew (i.e. the extension between xnear and xrand)
and a connection from xnew to the other tree Tb is attempted
(Line 8 & 12). In case of a successful connection, the
solution is updated (Line 13). Finally, Ta and Tb are swapped
and the next iteration begins (Line 17). Our extensions to
RRT-Connect are:
• Progressive Goal Region Expansion, which progres-

sively enlarges the time component of the space
(Line 4), and samples new goals for the goal tree
(Line 6),

• Conditional Sampling (Line 7), which first samples a
state from Q, and then samples a corresponding valid
time, with which xrand is constructed, and

Fig. 2: Illustration of the search trees after the same com-
putation time with naive and weighted sampling strategy
with similar numbers of samples (for naive sampling, not
all samples are visible, and the time bound was increased
beyond the shown range).

• Simplified Rewiring, which improves the solution
(Line 11) by optimizing for minimal arrival time.

We also prune the trees (Line 16) to remove parts which
cannot improve the solution anymore.

1) Progressive Goal Region Expansion: If the time-space
T is unbounded it is difficult to generate samples distributed
throughout the whole space. However, when imposing an
arbitrary time-bound, the problem might become infeasible
[24], [25]. Therefore, we expand the sampled goal region
progressively whenever a new batch of samples is added. To
do that, we introduce several parameters contained in the
bound struct B: B.timeRange determines the time bound
for goal sampling and B.batchSize determines after how
many generated samples the expansion takes place. When
a batch is full, B.timeRange is increased by P.rangeFactor
and B.batchSize is increased accordingly.

With an increasing time-bound, the sample density is
higher at the lower time values due to the previously gener-
ated samples. Figure 2 shows how naive sampling may lead
to cases where it becomes increasingly unlikely to find any
solution. Thus we use weighted sampling, where the old and
newly expanded region are explicitly sampled with probabil-
ity B.batchProbability and 1 − B.batchProbability, respec-
tively, to ensure a uniform distribution over the total space.

Precisely, the Progressive Goal Region Expansion
works as follows: The parameters P.rangeFactor,
P.initialBatchSize, and P.sampleRatio are user-specified.
All variables of B are initialized at the start (Algorithm 2)
and updated during execution. While B.timeRange is used
when the current goal region is sampled, B.newTimeRange
is used to sample the newly expanded one. After the
first expansion, B.newTimeRange is always higher than
B.timeRange by a factor equal to P.rangeFactor (Alg. 3,
Line 2 & 3). The minimum amount of the new batch
size is given by (P.rangeFactor − 1) · B.totalSamples.
That is, when all samples of the new batch are placed
in the new region, the overall distribution would be
uniform over the time-space. To ensure that the old region
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Fig. 3: The start and goal cones contain all states that can be
reached from the start or can reach the goal respectively. The
intersection contains all states that can be part of a solution.

is also sampled, B.batchSize is further increased by
P.sampleRatio ∈ (0, 1) (Line 4). The probability to sample
the old batch B.batchProbability is calculated in dependence
of P.rangeFactor and P.sampleRatio (Line 5). Due to the
exponential growth of the batch size, the choice of the
configuration parameters is important for performance.

To sample a goal state, its space component q is sampled
first (Alg 4, Line 1). The lower and upper bounds for the
time, tlb and tub, are calculated in dependence on whether
the time is explicitly bounded (Line 4), the current region
is sampled (Line 6), or the newly expanded one is sampled
(Line 8). The sampling of nongoal-states is subject to the
sampled goal states and therefore implicitly bounded by the
time value of the sampled goal states (Section III-A.2).

Algorithm 2 InitializeBoundVariables

Input: P
1: B.timeRange← P.rangeFactor
2: B.newTimeRange← P.rangeFactor
3: B.batchSize← P.initialBatchSize
4: B.samplesInBatch← 0; B.totalSamples← 0
5: B.batchProbability← 1
6: B.goals← ∅; B.newGoals← ∅
7: return B

Algorithm 3 UpdateGoalRegion

Input: B,P, tmax
1: if tmax =∞ and B.samplesInBatch = B.batchSize then
2: B.timeRange← B.newTimeRange
3: B.newTimeRange ∗= P.rangeFactor
4: B.batchSize← (P.rangeFactor−1)B.totalSamples

P.sampleRatio

5: B.batchProbability← 1−P.sampleRatio
P.rangeFactor

6: B.goals← B.goals ∪B.newGoals
7: B.newGoals← ∅; B.samplesInBatch← 0

8: return B

2) Conditional Sampling: Any state that can be part of a
solution path must have a finite distance d to the start and at
least one goal state. Due to velocity-constraints, only states
in the intersection of the start and goal cones (see Fig. 3
for an illustration) meet this requirement. Thus, similar to

Algorithm 4 SampleGoal

Input: xstart,Xgoal, Tgoal, tmax, B
1: q ← SAMPLEUNIFORM(Qgoal)
2: tmin ← LOWERBOUNDARRIVALTIME(qstart, q)
3: SAMPLEOLDBATCH←RND(0, 1)≤B.batchProbability
4: if tmax 6=∞ then
5: tlb ← tmin; tub ← tmax
6: else if SAMPLEOLDBATCH then
7: tlb ← tmin; tub ← tmin ·B.timeRange
8: else
9: tlb ← tmin ·B.timeRange

10: tub ← tmin ·B.newTimeRange
11: if tub > tlb then
12: t← SAMPLEUNIFORM(tlb, tub)
13: Tgoal ← Tgoal ∪ {(q, t)}
14: if SAMPLEOLDBATCH then
15: B.goals← B.goals ∪ {(q, t)}
16: else
17: B.newGoals← B.newGoals ∪ {(q, t)}
18: return B

Informed RRT* [26], we only sample the region that can
produce solutions. Ideally, one would sample directly from
the union of intersections of start and goal velocity-cones.

However, as the explicit computation of the intersection
is not possible for multiple goal states, we use Conditional
Sampling: We first uniformly sample a configuration q
(Alg 5, Line 2). Using q, we then sample a feasible time from
the range of possible times conditioned upon q. The range
of possible times is dependent on xstart and the previously
sampled goal states. To sample more uniformly, we use two
goal sets: B.goals for the current goal states and B.newGoals
for the goal states in the newly expanded region. The time
bounds tlb, tub are obtained by the minimal arrival time from
the start configuration qstart until q (Line 3) and the maximum
valid time given by:

MAXVALIDTIME(qrnd, G) =

max
(qg,tg)∈G

(
tg −min

i

dQ(q
i
rnd, q

i
g)

vimax

)
(2)

The specific calculation of tlb, tub is dependent on whether
the current (Line 4) or the new region is sampled (Line 7).

3) Simplified Rewiring: To compute time-optimal solu-
tions ST-RRT* uses similar methods as RRT* and preserves
its property of asymptotic optimality. Equal to RRT*, ST-
RRT* tries to rewire a set of states near to the newly added
state, xnew, after tree expansion. Contrary to RRT*, rewiring
is only performed in the goal trees. This is due to the fact
that rewiring nodes in the start tree can never lead to a better
arrival time in the path. Rewiring states in the start tree can
not change their arrival time, whereas in the goal trees a
node can be rewired to a root node with a smaller time value.
One more deviation is the check of which nodes should be
rewired. For all nodes in the goal trees simply the time value
of their respective root node has to be considered.



Algorithm 5 SampleConditionally

Input: xstart,X , B
1: repeat
2: q ← SAMPLEUNIFORM(Q)
3: tmin ← tstart+LOWERBOUNDARRIVALTIME(qstart, q)
4: if RANDOM(0, 1) < B.batchProbability then
5: tlb ← tmin
6: tub ← MAXVALIDTIME(q,B.goals) . eq (2)
7: else
8: t∗min ← MAXVALIDTIME(q,B.goals)
9: tlb ← MAX(tmin, t

∗
min)

10: tub ← MAXVALIDTIME(q,B.newGoals)
11: until tlb < tub
12: t← SAMPLEUNIFORM(tlb, tub)
13: return (q, t)

B. Proof Sketches

To prove probabilistic completeness in space-time, we
distinguish between two cases. In case of bounded time, plan-
ning with a quasi-metric reverts to kinodynamic planning,
where we refer to results from [27] and [28] for completeness
proofs.

The second case is unbounded time: If a solution exists,
there needs to be a feasible goal region at a finite time. Since
we iteratively increase the upper bound, we will, eventually,
have increased the goal region to include the feasible goal
region. Due to the use of uniform sampling of the time range,
there will be positive probability that the feasible goal region
will be sampled. Since conditional sampling always gives a
positive probability of sampling any open set, this makes
ST-RRT* retain probabilistic completeness [29].

Apart from probabilistic completeness, ST-RRT* is also
asymptotically optimal with respect to arrival time. Since
ST-RRT* is modelled after RRT-Connect, it can be made
asymptotically optimal by tree rewiring [4], [30]. Inside
the rewiring step, we connect newly added states to the
nearest goal tree which minimizes arrival time. This ensures
asymptotic optimality with respect to final arrival time.

IV. EVALUATION

We compared ST-RRT* to other planners on 4 different
scenarios using the benchmarking capabilities of OMPL [31].
All evaluations were performed over 100 runs with different
pseudorandom seeds of 30s each (if not stated otherwise).
ST-RRT* is compared to RRT-Connect1 and RRT* in space-
time using their OMPL implementations in default config-
uration. Since RRT* and RRT-Connnect algorithms can not
operate on unbounded time, three different time bounds are
measured. The lowest time bound was determined according
to the best solutions of ST-RRT* and set to a higher value
to ensure feasibility. Without knowing a solution this is
generally not possible. For planning through Space-Time,
most of the planners in OMPL [32] do not work either

1The metric had to be changed to be symmetric for distance calculation,
but remained as stated for motion validation (this change did not help in
the other planners).

(a) Narrow passage in time
(R1+1).

(b) Rnd. moving obstacles
(R2+1). Obstacle start in black,
end position in grey.

(c) Mobile robots. (d) Robotic arms.

Fig. 4: Illustrations of the scenarios: Starts are shown in blue,
goals and goal regions in yellow, and obstacles in black. The
dashed lines are the paths of the moving obstacles.

due to only working with metric spaces, only working
with euclidean spaces, not supporting asymmetric distance
function (e.g. due to using undirected graph structures), or
were never able to find solutions in the specified runtime.

A. Scenarios

We evaluate the method on the following scenarios2:
(i) Narrow passage: A point has to move from start config-

uration q0 to goal configuration qF in an environment
where the configuration space is split into two parts by
an obstacle up to a certain point in time except for three
narrow periods of time (Fig. 4a).

(ii) Cluttered space: A (hyper-)sphere has to move from
q0 to qF in an environment with randomly moving
obstacles (Fig. 4b).

(iii) Sequential mobile robot planning: A robot with a mo-
bile base and a robot arm on top (R8) has to move from
q0 to qF in an environment with randomly distributed
obstacles, and other moving mobile robots that move
on a fixed trajectory (Fig. 4c). This is a common
subproblem in prioritized multi robot planning [33].

(iv) Sequential robot arm planning: A robotic arm (R7) has
to move from configuration q0 to qF in an environment
with previously planned panda robotic arms (Fig. 4d).
Such a scenario may arise in e.g. simultaneous bin-
picking with multiple robots.

We show the narrow passage problem in R1+1 and R8+1

and the cluttered env. in R2+1 and R8+1. For the robotic
settings, we test the planners in the 6th and the 11th agent
(i.e. the previous 5, and 10 agents, respectively, already have
a trajectory).

2Videos of the scenarios, and the paths are in the supplementary material.
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(a) Narrow passage in time: R1+1

0

20

40

60

80

100

S
u

cc
es

s
[%

]

10−3 10−2 10−1 100 101

Computation time [s]

0

1

2

3

4

C
os

t

tub

1

2

4

1

2

4

(b) Narrow passage in time: R8+1
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(c) Rnd. moving obstacles: R2+1
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(d) Rnd. moving obstacles: R8+1
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(e) Mobile robots: 6th agent
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(f) Mobile robots: 11th agent: 100s
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(g) Robot arms: 6th arm
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(h) Robot arms: 11th arm

Fig. 5: Success rates and cost plots for the experiments (Section IV-A) for ST-RRT*, RRT-Connect, and RRT*
over 100 runs. RRT-Connect and RRT* were run with 3 different upper bounds, tub for the time (indicated in the figure),
since they can not operate in unbounded time-spaces. The thick line is the median, and the shaded area in the cost plot
shows the 95% nonparametric confidence interval. Cost for RRT-Connect is shown as the median with error bars for the
95% nonparametric confidence interval. Unsuccessful runs are treated as infinite cost. The upper time limits for RRT* and
RRT-Connect are listed in the figures. Planners that are not shown were not able to find any solution in the given time.

B. Experimental Results

We analyze the results of both the abstract experiments
(Fig. 5a - Fig. 5d), and the simulated robot experiments
(Fig. 5e - Fig. 5h). We compare the success rates and the
cost-convergence plots of the different algorithms.

1) Initial solution time: In almost all cases the median
initial solution time of ST-RRT* is lower than for both RRT-
Connect and RRT*, even with the tightest time-bound. This
can be attributed to the conditional sampling, which helps
avoid exploring areas that are clearly not reachable.

2) Success Rate: A low time bound helps to more quickly
find solutions for RRT-Connect and RRT*; however, it can
lead to the inability to find solutions at all. This is especially
problematic for RRT-Connect which stops sampling goal
states at some point, leading to RRT-Connect sometimes not
reaching 100% success rate even though the time bound is
specified such that a solution would be attainable.

3) Cost: ST-RRT* converges to the best found solution
more quickly than RRT*. Additionally, while the initial cost
of the solution of ST-RRT* is sometimes higher than RRT-
Connect’s solution, the final solution cost of ST-RRT* is in
all cases lower or equal than for the other methods.

Summarizing the results, a special treatment of the time-
space is clearly necessary in a planner to achieve good
performance in the motion planning process and ST-RRT*
outperforms the other planners on the tested problems.

V. CONCLUSION

We proposed ST-RRT*, a planning algorithm that is able to
efficiently deal with unbounded time spaces and optimizes
for arrival time in an environment with moving obstacles
on known trajectories. We guarantee probabilistic complete-
ness and asymptotic optimality by introducing progressive
expansion of the goal space and generate new samples
accordingly. Our algorithm efficiently deals with many goals
and converges to the optimal path quickly by making use of
conditional sampling and shrinking the goal spaces.

The current implementation of ST-RRT* still has two
limitations: the batch size and the expansion factor must be
chosen in the beginning with a crude estimate of when the
goal can be reached. In practice this is not a large limitation
since real settings usually impose some upper limit on the
acceptable maximum time to reach a goal state. Additionally,
acceleration and more complex kinodynamic constraints (e.g.
torque limits) are not taken into account. While this does not
pose a problem in our applications, it would not be applicable
to robots which have to be in quasi-static equilibrium.

We experimentally demonstrated that ST-RRT* scales well
to high dimensions on both abstract and simulated robotic
experiments. Our algorithm outperforms state of the art
algorithms on both initial solution time and convergence to
the optimal solution. An initial version of ST-RRT* was used
in work on large-scale multi-robot coordination [2].
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