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Fig. 1: Initial test of multi-mode estimation on different state spaces. Problem is to move a point robot from a given start
state (green) to a goal state (red) while optimizing a minimum-length cost functional. Local modes found after convergence
are shown in red. Left: Sphere with two punctured holes (in grey) and four modes (in red). Middle Left: Punctured Mobius
strip with three modes. Middle Right: Punctured Klein bottle with three modes. Right: Punctured torus with four modes.

Abstract—In this extended abstract, we report on ongoing
work towards an approximate multimodal optimization algo-
rithm with asymptotic guarantees. Multimodal optimization is
the problem of finding all local optimal solutions (modes) to
a path optimization problem. This is important to compress
path databases, as contingencies for replanning and as source
of symbolic representations. Following ideas from Morse theory,
we define modes as paths invariant under optimization of a cost
functional. We develop a multi-mode estimation algorithm which
approximately finds all modes of a given motion optimization
problem and asymptotically converges. This is made possible
by integrating sparse roadmaps with an existing single-mode
optimization algorithm. Initial evaluation results show the multi-
mode estimation algorithm as a promising direction to study path
spaces from a topological point of view.

I. INTRODUCTION

We develop a new multi-mode estimation algorithm to find
modes. Modes are paths invariant under optimization of a
cost functional. Estimating modes is important to provide
completeness guarantees to optimization algorithms, as con-
tingencies for rapid replanning [35, 18, 14], and to provide
admissible heuristics for more complex problems [33, 15].
This is useful in multi-robot navigation [14, 8], to investigate
long-horizon planning problems [4], to sparsify path databases
[19], or as symbols for high-level planning [30].

However, the robotics community has thus far concentrated
almost exclusively on single-mode optimization algorithms.
Methods include CHOMP [36], TrajOpt [23], STOMP [6],
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KOMO [28, 29], Kernel Projection [7], Bayesian Optimization
[32] or Gaussian Process Planning [12]. While those optimiza-
tion methods find a single mode from an existing solution, we
like to leverage them for multi-mode estimation.

Multi-mode estimation is closely related to topological op-
timization. Topological concepts like homotopy [2, 1], homol-
ogy [19, 20] or braids [9, 10] have been successfully applied in
robotics. Our work differs by explicitly assuming that a single-
mode optimization algorithm is given. Motivated by Morse
theory [11], we concentrate on the problem of enumerating
modes. While finding modes has been studied extensively
in (evolutionary) optimization [21], in terms of visualization
[27] and in terms of mode-relationships [13, 31], there are
just a few works applying this concept to path planning
[5, 22, 17, 33]. Our work is complementary, in that we do
multi-mode estimation but provide asymptotic guarantees.

While we previously tackled the same problem [16, 14], we
significantly improve upon this work. In particular, our multi-
mode estimation algorithm can enumerate the modes of a given
optimal planning problem while (i) asymptotically converges
to all modes (see proof in Appendix A), (ii) being anytime, and
(iii) can use iterative optimizers. This is achieved by having
an integrated 2-stage process combining sparse roadmaps with
a single-mode path optimization method.

II. APPROXIMATE TOPOLOGICAL OPTIMIZATION

We consider optimal motion planning problems of the form
(X,xI , xG, c, σ) whereby X is the state space, xI is an initial
state, xG a goal state, c is a cost functional of the form

c(p) =

∫ 1

0

L(x, p(x), p′(x))dx (1)
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Fig. 2: Overview of multi-mode estimation. As input, we use
a state space on which we grow a sparse roadmap [3]. New
paths in the sparse roadmap are proposed to the multi-mode
database for storage and optimization. We terminate if both
the sparse roadmap and all database paths have converged.

whereby p : I → X is a path on the state space from xI to xG
and σ is a path optimizer. We assume that σ is deterministic,
does not increase path cost and asymptotically converges to a
fixed point path (See Appendix A for more details). Our goal
is to find the modes, i.e. the set of paths which are invariant
under optimizer σ over the cost functional Eq. (1).

A. Overview of Multi-Mode Estimation

Our general method is an integrated 2-stage process de-
picted in Fig. 2. We first grow a sparse roadmap [3] on the
state space. Whenever we add a new edge to the roadmap,
we check if this edge creates a new path from start to goal.
This path is then added to the multi-mode database. Our
algorithm terminates if no samples are added to the sparse
roadmap for M subsequent iterations and if all paths in the
database have asymptotically converged under optimizer σ.
This algorithm is anytime, i.e. it returns all current paths on
premature termination.

B. Sparse Roadmaps

In the first step of our algorithm we grow a sparse roadmap
on the state space. This method follows closely previous
algorithms [25, 3] and uses the parameter ∆ as the visibility
radius to reject samples. Whenever we add a new edge to the
sparse graph, we check if this edge adds a path from start
to goal. This is done by first checking if the source vertex
of the edge is in the same component as the start and the
goal vertex of the graph. We then construct a path from start
to the source vertex and another path from source vertex to
the goal vertex. Both paths are then concatenated and send
to the multi-mode estimation database. We say that the sparse
roadmap is converged if M subsequent infeasible samples have
been drawn [25].

C. Multi-mode database

The multi-mode database gets as input a stream of paths and
adds those paths either to the database or uses them to update
an existing path. In the first step, we apply the optimizer σ for
one iteration. We then iterate through all database paths and
check for path equivalence. Path equivalence is tested using

the Hausdorff metric which is defined as

dH(p, p′) = sup
s∈I

inf{d(p(s), p′(t)) | t ∈ I}, (2)

whereby sup is the supremum (least upper bound), inf is the
infimum (greatest lower bound) and d is a metric on X . We say
that two paths p, p′ are equivalent if dH(p, p′) < ε, whereby ε
is a resolution parameter specific to the optimizer. If two paths
are equivalent, we either update the existing path if its cost is
lower or remove it. If no paths are equivalent, we add the new
path to the database. After every iteration, we randomly pick
a non-converged path, optimize it for one iteration, and check
for path equivalence. This stage is said to be converged if all
paths have converged.

III. DEMONSTRATIONS

As an initial test of the multi-mode estimation algorithm, we
use four 2-d examples. In particular, we use punctured versions
of the sphere, the Mobius strip, the Klein bottle and the torus
(Fig. 1). Each of those state spaces has been implemented in
the open motion planning library (OMPL) [26], whereby we
implement uniform sampling using curvature-based rejection
sampling [34] and implement interpolation functions which
take the gluing of the state space into account.

Using parameters as detailed in Appendix B, we let the
multi-mode estimation run 10 times and report on t, the
time until convergence in seconds, m, the average number
of minima found, and n, the average number of nodes in the
sparse roadmap after convergence. For the Mobius strip, we
have t = 8.75±1.24, m = 3 and n = 78.3. For the sphere, the
results are t = 17.76 ± 4.32, m = 4, n = 42.1, for the torus
t = 16.39± 1.52, m = 5, n = 116.0 and for the Klein bottle
t = 62.41 ± 35.82, m = 3.5, n = 97.2. The results indicate
that the multi-modal estimation algorithm robustly converges
while having a low number of nodes in the sparse roadmap.
We observe that in the Klein bottle scenario, the optimizer
converges to 3 modes in half of the cases, while converging
to 4 in the rest of them. This is due to numerical instabilities
in the optimizer, which needs to be addressed in future work.
However, our multi-mode estimation algorithm is conservative,
i.e. it reliably finds all existing modes in all cases.

IV. CONCLUSION

This extended abstract described a method to estimate
modes of a robot motion planning and optimization problem.
To apply this methodology to more complex problems, we
further need to solve two problems. First, we need to scale
the algorithm up to high-dimensional systems. This can be
achieved by aggregating modes using multilevel abstractions
[14, 15]. Second, while we provided proof for asymptotic
convergence in the Appendix, it is often difficult to achieve
this in practice due to jumping behavior in the optimizer.
This could potentially be alleviated by using more powerful
optimizers with iteration step guarantees. However, we believe
multi-mode estimation to be a useful and promising tool to
study high-dimensional path spaces from a topological point
of view.
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APPENDIX A
PROOF OF ASYMPTOTIC CONVERGENCE

In this appendix, we prove that the multi-mode estimation
algorithm converges to all modes of a given optimization
problem, i.e. that it asymptotically converges. This result
depends on the parameters M and ∆ of the sparse roadmap.
In particular, we prove that multi-mode estimation converges
with probability 1 as M approaches infinity to all modes with
a basin of attraction (neighborhood of paths converging to the
mode) of radius at least ∆.

A. Notations and Assumptions

Let X be the state space, a compact manifold (closed,
bounded, locally euclidean), xI ∈ X be the start and xG ∈ X
be the goal state. Let us further assume that we are given a
distance function d : X × X → R and a constraint function

φ : X → {0, 1}, which evaluates to zero if a state is constraint-
free and to one otherwise (this function encapsulates e.g. joint
limits, self-collisions, robot-environment-collisions or robot-
robot-collisions). The constraint function implicitly defines the
free state space Xfree = {φ(x) = 0 | x ∈ X}. We then define
the path space P to be P = XI

free

∣∣∣xG

xI

, i.e. the set of paths
p : I → Xfree which start at xI and end at xG.

Given a path space, we like to estimate modes. Recall
that a mode is a path invariant under optimization of a
cost functional. We assume a given cost functional c(p) as
introduced in Eq. (1) which assigns a cost value to each path
in our path space and we assume a path optimizer σ : P → P ,
which is a mapping taking as input a path and returning as
output another path. We make additional assumptions on this
optimizer.
• Non-increasing cost. If c(p) is the cost of p, then
c(σ(p)) ≤ c(p).

• Deterministic. Any two applications of σ(p) will yield
the same unique deterministic path.

• Converges Asymptotically to a Fixed Point. The path
optimizer will eventually converge to a path, i.e. there
exists an N > 0 such that for any n > N we have
σn(p) = σn−1(p) whereby σn is the n times repeated
application of the mapping σ.

Note that we do not make additional assumptions such
as continuity, i.e. that input and output are continuously
deformable into each other (homotopic), or idempotence, i.e.
that the optimizer converges after one iteration. While this
slightly increases the complexity of our algorithm, it vastly
increases the scope of single-mode optimizers we can use,
such as shortcutting algorithms [24] or iterative gradient
descent methods [29].

B. Basin of Attraction

Let p be a mode of Eq. (1). We define its basin of attraction
as the set of paths p′ ∈ P such that there exists an N > 0
such that for all n > N we have dH(p, σn(p′)) ≤ ε, i.e. p is
a fixed point for the optimizer σ when applied to path p′. In
this case, the mode is also called an attractor.

For the theoretical treatment, it is important to quantify the
size of the basin of attraction. We introduce rσ(p), which
we define as the radius of the basin of attraction of mode
p, which is the largest real number such that all paths p′ of
distance dH(p, p′) ≤ rσ(p) are inside the basin of attraction
for optimizer σ.

In practice, we might have to deal with optimizers which
exhibit jumping-behavior, where it looks like the optimizer
converged (i.e. we stay below ε for one iteration), while in
reality the optimizer might have only made small steps and has
in fact not yet converged. This can be dealt with by defining
a parameter NE , which is the number of steps during which
the optimizer needs to stay below ε for us to consider the path
to be converged to a fixed point.

http://www.ri.cmu.edu/pub_files/2013/5/CHOMP_IJRR.pdf
http://www.ri.cmu.edu/pub_files/2013/5/CHOMP_IJRR.pdf


C. Asymptotic Convergence
We are ready to state our two theorems. The first theorem

establishes that for every mode p, there exists (in the limit) a
path on the sparse roadmap which has a Hausdorff distance to
the mode which is upper bounded by the visibility radius ∆.
In the second theorem, we then establish that all modes with
a radius of basin of attraction larger than the constant will
eventually be found with probability 1− 1

M . Before we state
those theorem, we restate a Lemma by Dobson and Bekris [3],
which will come in handy in our proofs.

Lemma 1 (Dobson and Bekris [3]). Let p be a path. Then
there exists a connected series of vertices V = {v1, . . . , vM}
on the sparse graph, with probability approaching 1 as M
goes to infinity, such that every point p(s) on the image of p
lies in the visibility region of at least one vertex in V .

This is basically a slight restatement of Lemma 1 in Dobson
and Bekris [3]. We use this Lemma to prove that paths are
upper bounded in the Hausdorff distance.

Theorem 1. Let p be a mode. Then there exists a path p′

on the sparse roadmap, with probability approaching 1 as M
goes to infinity, such that dH(p, p′) is upper bounded by ∆
for dH being the Hausdorff distance.

Proof: By Lemma 1, p is covered by a path p′ consisting
of a connected sequence of vertices. Let p(s) be an element on
the image of the mode. Then p(s) lies in its visibility radius
of some vertex v on p′ and its distance to the path is therefore
upper bounded by d(p(s), v) ≤ ∆. Since this is true for every
point, the Hausdorff distance can therefore be upper bounded
by ∆.

Theorem 1 establishes that there exists, for every mode, in
the limit, a path on the sparse roadmap which is inside a ∆-
neighborhood of the mode. We use this result to establish that
every mode with a sufficiently bounded basin of attraction will
be found in the limit.

Theorem 2. Let p be a mode with radius of basin of attraction

of rσ(p). If rσ(p) ≥ ∆, then multi-mode estimation with
optimizer σ will eventually converge to p with probability
approaching 1 as M goes to infinity.

Proof: By Theorem 1, there exists, in the limit as M goes
to infinity, a path p′ on the sparse roadmap with Hausdorff
distance upper bounded by ∆. Since this path is by assumption
below the radius of the basin of attraction rσ(p), this path
will, eventually, converge to p by repeated application of the
mapping σ.

Those two theorems show that we will find all modes for
optimizer σ with probability approaching 1 as M goes to
infinity and which have a basin of attraction of at least ∆.
Modes which belong to tight narrow passages or where the
cost functional is pathological will often have small basin
of attraction and are therefore not guaranteed to be found.
However, we can tune both M to be arbitrarily large and ∆ to
be arbitrarily small, thereby accommodating even ill-behaved
modes and ill-behaved cost functionals.

APPENDIX B
PARAMETERS

In practice, we need to choose additional parameters for
the multi-mode estimation, such that (1) we converge to all
(desired) modes and (2) the runtime does not blow up. By
trial and error, we converged to the set of parameters shown
in Table I, both for the sparse roadmap and for the optimizer.

Parameter Description Value
Sparse

Roadmap
∆ Visibility radius of a node 0.1µ
M Number of subsequent failures 5000
t Stretch factor 3

Optimizer
ε Accuracy for path equivalence 0.3
εE Threshold for convergence error 1e−2
NE Number of sub-threshold iterations

to declare convergence
10

TABLE I: Parameters used in the multi-mode estimation
algorithm. The constant µ is the measure of the state space.
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