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Abstract We present a skill for the perception of three-dimensional kinematic struc-
tures of rigid articulated bodies with revolute and prismatic joints. The ability to
acquire such models autonomously is required for general manipulation in un-
structured environments. Experiments on a mobile manipulation platform with real-
world objects under varying lighting conditions demonstrate the robustness of the
proposed method. This robustness is achieved by integrating perception and manip-
ulation capabilities: the manipulator interacts with the environment to move an un-
known object, thereby creating a perceptual signal that reveals the kinematic prop-
erties of the object. For good performance, the perceptual skill requires the presence
of trackable visual features in the scene.

1 Introduction

We present a perceptual skill for the interactive and autonomous acquisition of com-
plete kinematic models of three-dimensional (3D) rigid objects with prismatic and
revolute joints. Such objects are common in everyday environments: doors, drawers,
pliers, scissors, tools, etc. Their intrinsic degrees of freedom are coupled with their
intended use; knowledge of the kinematic structure of objects is thus a prerequisite
for their manipulation. We rely on visual perception to address this challenge as
cameras are ubiquitous and cheap. Our task, therefore, is to extract the shapes and
kinematic relationships of rigid bodies from two-dimensional (2D) trajectories of
image features on these bodies, an inherently ill-defined task.

To successfully devise a skill for perceiving 3D kinematic models, we must find
a factorization [11] of the perceptual problem. A factorization is a decomposition
of a problem into subproblems, each of which can be solved reliably and whose
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sub-solutions can be composed into a solution to the original problem. In our ex-
perience, such a factorization rarely aligns with the established boundaries between
the subdisciplines of robotics, such as vision, manipulation, control, or planning.
Instead, robust solutions must cross these boundaries and require a close integration
of the subdisciplines.

Fig. 1 Our Mobile Manipulator interacts with
a toy train. To extract a kinematic model of
the train, it first segments a set of rigid bodies
from the background: train engine, train car, and
wooden figures. This segmentation is then used
to estimate the 3D shape and motion of the rigid
bodies. Based on these estimates, it determines
the kinematic relationships between the bodies
and thus the kinematic model of the train.

The proposed factorization of our
perceptual task has two distinguishing
features. First, it eliminates the tradi-
tional decomposition of manipulation
into separate components for percep-
tion and manipulation. This seems to
make the problem harder at first—but
the opposite is the case: by interacting
with objects, the robot excites their de-
grees of freedom and reveals a perti-
nent visual signal that would otherwise
remain hidden (see Figure 1). Second,
we decompose the problem of going
from 2D feature trajectories in the im-
age plane to 3D motion estimates into
three factors. This represents a differ-
ent decomposition from the one tradi-
tionally used in structure from motion.
There, 3D shape estimates are obtained
directly from the feature trajectories in
the image plane. In contrast, our factor-
ization first segments all feature trajectories in the image plane into groups hypothe-
sized to belong to a single rigid body. This grouping is already influenced by charac-
teristics that result from the 3D motion—but it does not lead yet to any hypotheses
about this motion. The second step (factor) then uses the grouped feature trajecto-
ries to infer shape and motion information. And finally, the third factor identifies
kinematic relationships. This division into three factors will prove to be critical for
the robustness of our approach.

We evaluated the proposed perceptual skill with 10 real-world articulated ob-
jects. A mobile manipulation platform, equipped with a regular web-cam as the vi-
sion sensor, interacted with the various objects. Our approach reliably and robustly
identified the kinematic structure of all ten articulated objects, given the assumption
that objects contain a sufficient number of trackable features. These results show
that our interactive perception approach can robustly acquire kinematic models for
previously unseen articulated objects.

The proposed perceptual skill provides an important component for the develop-
ment of autonomous manipulation capabilities. Traditionally, approaches to robotic
manipulation rely on a priori information about the environment. Given sufficient in-
formation, these approaches manipulate successfully in controlled factory settings
and staged research experiments. They will fail, however, in unstructured environ-



Interactive Perception of Articulated Objects 3

ments, i.e. environments for which it is impossible to provide sufficient informa-
tion a priori. We must therefore develop manipulation skills that do not depend on
detailed a priori information. To succeed at general manipulation, robots must be
able to acquire information about their environment autonomously, using percep-
tual skills like the one described here.

2 Related Work

To find a factorization for our perceptual problem, we integrate concepts from mul-
tiple research areas. We briefly review the methods and techniques that are most
relevant to each of the three steps (factors) of our algorithm.

2.1 Image Segmentation

Image segmentation identifies boundaries around image regions with consistent
properties [7]. Here, we are concerned with object segmentation, i.e. segmentation
of an image region showing a single object. Our perceptual skill must identify the
boundaries of objects in the visual stream to compute the kinematic model.

Segmentation methods for single images commonly identify discontinuities in
color, texture, brightness, or depth [7, 2]. Regions are determined using threshold-
ing, edge detection, clustering, or region growing to group pixel according to these
image properties [7]. The resulting boundaries, however, do not necessarily corre-
spond to object boundaries, as rigid object can be multi-colored, for example, or
possess internal depth discontinuities.

In the context of manipulation, an appropriate image segmentation should group
together those image regions that belong to a physically connected object. To over-
come the problem of single-image segmentation, interactive segmentation has been
proposed [6, 14]. These methods rely on the robot’s body to induce motion in the
observed scene, thereby revealing a visual signal of “objectness”. The resulting se-
quence of images is then analyzed to identify object boundaries. Our work also
relies on interaction to solve the segmentation problem but combines it with the
techniques of single-image segmentation.

2.2 Depth Reconstruction

Our perceptual skill must identify the shape and relative motion of objects. To
achieve this, it must extract three-dimensional scene information from two-dimensional
image data. This is exactly what depth reconstruction methods accomplish.
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Depth reconstruction can be divided into methods that extract depth from a sin-
gle image and those that rely on sequences of images. Methods in the first category
must make strong assumptions about the settings such as known objects (e.g. hands
and faces [20]), known structure (e.g. walls and floors [4]), uniform color [16], or
uniform texture [17]. Other methods require training, and employ machine learn-
ing techniques [22]. All methods for recovering depth from a single image do not
consider motion, which, without assuming prior experience, is the single most con-
clusive evidence for identifying the three-dimensional structure of a scene.

A second category of methods uses motion information to recover depth. Meth-
ods in this category typically assume a single-body rigid world and a moving cam-
era. This category can be further divided into global optimization methods (e.g. bun-
dle adjustment [9, 15]) and recursive estimation methods (e.g. Extended Kalman
Filter [3, 24]). Some methods for recovering 3D shape from motion remove the
single rigid body assumption [8]. These algorithms, however, are computationally
complex and require a long sequence of images. Most existing methods for recover-
ing structure from motion assume that the world is static, i.e. they can only handle
a single object that is the entire world.

In this paper, we propose a different decomposition of the depth reconstruction
problem, specifically to overcome the assumption that the world is static. We first
compute a segmentation of the scene into rigid bodies by using deliberate interac-
tions with the environment, solely based on two-dimensional image information. We
then use this segmentation of the camera image into regions belonging to individual
rigid bodies to apply classical structure from motion techniques.

2.3 Kinematic Modeling

The robotics and computer vision communities have recently begun investigat-
ing the problem of autonomously acquiring kinematic models from sensor data.
Anguelov et al. [1] obtain kinematic models of doors by tailoring perception to the
kinematics of doors. Yan and Pollefeys [25] rely on structure from motion [3] to ob-
tain 3D feature trajectories, and then use spectral clustering to identify rigid bodies
and their kinematic relationship. This work assumes affine geometry of the scene
and only considers revolute joints. Ross et al. [21] follow the same principle, using
maximum likelihood estimation instead of spectral clustering. The strength of the
two latter algorithms is that they can handle bodies that undergo slight deformation
during the motion. All of the aforementioned approaches only handle revolute joints
and make strong assumptions to simplify the perception problem.

Sturm et al. [23] learn models of kinematic joints from three-dimensional fea-
ture trajectories, generated from deliberate interactions with the environment. This
approach does not attempt to identify rigid bodies in the scene; it assumes that only
one object is moving at a time.
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In prior work [10, 13], we presented a perceptual skill to extract kinematic mod-
els of planar articulated objects. That work considered revolute and prismatic joints.
In this paper, we extend this perceptual capability to three dimensions.

3 Acquiring 3D Kinematic Structures

We believe that the concurrent estimation of object segmentation, 3D structure,
and kinematic structure of a scene with multiple moving bodies is too difficult to
solve robustly in a single step. We therefore decompose the problem of perceiving
kinematic models into three components—we call them factors. The decomposition
is chosen so that each factor can make extensive use of the structure inherent to
the problem. We now describe the three factors—segmentation, reconstruction, and
joint detection, of our perceptual skill.

3.1 Rigid Body Segmentation

The first factor of our algorithm addresses the task of object segmentation. It lever-
ages structure inherent to the problem by interacting with the world to cause object
motion. This gives rise to the visual signal that exposes objectness and thus greatly
facilitates object segmentation.

There are two challenges associated with motion-based segmentation. First, ob-
ject motion must be present. Second, we must decode objectness from the ambigu-
ous and noisy 2D projection of 3D feature motion.

To address the first challenge, we use the robot’s manipulation capabilities to
induce object motion. By physically causing objects to move, the robot generates
a strong perceptual signal for object segmentation. In the current work, the robot’s
motion is scripted. This restriction will be removed in future work.

To address the second challenge, we leverage another type of structure inherent
to the problem: features associated with a single rigid body will have similar spatial,
temporal, and appearance characteristics. Color and texture consistency over a spa-
tially contiguous region can imply similarity of material. The distance between fea-
tures can be indicative of spatial proximity of the corresponding points in the scene.
The structural integrity expected of a rigid object imposes structure on the relation-
ship between the projected trajectories of features on the same body. And finally, the
observed 2D feature trajectories must be explainable by a possibly ambiguous 3D
motion. All of these clues exploit the structure of the problem but by themselves are
insufficient to determine an object segmentation. Our algorithm therefore integrates
all these clues to generate a combined object segmentation hypothesis.

Segmentation hypotheses are captured in a fully connected multi-graph G =
(V,E). A vertex v ∈ V corresponds to an LK-feature fi in the image and contains
the feature observations fi(t) = {u,v,c}, where (u,v) are the feature’s image coor-
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dinates and c is its color at time t. The weight w(ei, j) of an edge ei, j ∈ E indicates
the confidence that fi(t) and f j(t) belong to the same rigid body. The weight is
w(ei, j) = ∏k Pk( fi, f j), where Pk( fi, f j) indicates the likelihood of fi and f j being
on the same rigid object as estimated by one of our six predictors, described below
(see also [12]).

Relative Motion Predictor: The distance between two features fi and f j that
belong to the same rigid body and are moving approximately parallel to the image
plane changes little over time. The relative motion predictor leverages this heuristic.
It computes the maximum change in distance between fi and f j over time. If this
maximum change is below a noise threshold of five pixels, we conclude that fi and
f j are likely to belong to the same rigid body, and set wi, j to 1.

Short and Long Distance Predictors: If the distance between two features fi
and f j is small, they are more likely to belong to the same rigid body than to lie on
different ones. Conversely, if this distance is large, the features more often belong to
different bodies. The short and long distance predictors leverage these two comple-
mentary heuristics. They compute a confidence value as a function of the distance
δ ( fi, f j) between the features before and after the interaction.

Color Segmentation Predictor: The color segmentation predictor exploits the
fact that image regions sharing similar color and texture are more likely to be part of
the same rigid body. It uses color and texture information to segment an image into
color-consistent regions [5] (see Figure 2) and then measures the number of color
regions separating a pair of features. Point features that are in the same color region
are more likely to belong to the same rigid body than points that are in neighboring
regions. The more color regions separate a pair of features fi and f j, the weaker the
predictor’s confidence is that they lie on the same rigid body.

Fig. 2 Illustration of the Color Segmentation predictor

Triangulation Predictor: Features on the same rigid body are likely to maintain
neighborhood relationship throughout the motion of the object. The triangulation
predictor exploits this structural integrity. It computes a Delaunay triangulation of
the features and then updates the position of each feature, maintaining the graph
connectivity. If an edge ei, j intersects with another edge, the predictor assigns wi, j =
0. If the neighborhood relationships of features remain consistent after the motion,
edges are assigned wi, j = 1.

Figure 3 shows feature motion that violates structural integrity. The left image
shows the Delaunay triangulation for a set of features at time t. The right image
corresponds to the adjacency relationship at time t for feature locations at time t +
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1. In this example, only one feature (blue circle) has moved, and therefore is not
consistent with the other features (orange circles).

Fig. 3 Illustration of the Triangulation predictor

Fundamental Matrix Predictor: Features on the same rigid body undergo a
consistent 3D motion. The recorded trajectories fi(t) only provide the 2D projection
of the true 3D trajectories. The Fundamental Matrix predictor searches for plausi-
ble 3D motions that best explain large subsets of the features. It computes motion
hypotheses in the form of a fundamental matrix [9] for sets of eight features. It then
clusters features into groups whose motion can be explained accurately by the same
hypothesis. We set wi, j to 1 if the motion of features fi and f j can be explained by
the same fundamental matrix hypothesis; the weight is set to zero otherwise.

To extract an object segmentation hypothesis from the resulting weighted graph,
we first discard edges with weight zero. We then use recursive weighted min-cut [18]
to decompose the graph into its strongly connected components. Each of these com-
ponents represents a rigid body hypothesis.

3.2 Three-Dimensional Reconstruction

In the previous section we described how to segment image feature trajectories into
rigid body hypotheses. This now enables us to apply standard methods for the ex-
traction of 3D motion from 2D features.

The problem of recovering structure from motion is well studied [24, 3, 9]. Our
instance of the problem, however, is more challenging than the standard case. Rather
than using features distributed across the entire image, we can only rely on features
in small image regions. Furthermore, structure from motion is usually applied to
scenes with large depth discontinuities, which aids reconstruction. In our case, ma-
nipulable objects often only exhibit small depth discontinuities. Both of these prop-
erties make recursive estimation of 3D structure from 2D feature trajectories much
more difficult.

The key challenges in our scenario are the initialization and convergence of recur-
sive estimation [19]. We use bundle adjustment [15] to estimate the depth values of
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all features in the first frame. We then initialize an Extended Kalman Filter [3] with
these depth values and let it estimate the 3D motion of the object over time. Using
these techniques we get reliable results. However, we believe that this component
of our algorithm can be greatly improved by tailoring it to the specific requirements
that differ from general structure from motion applications.

3.3 Joint Detection

The last component (factor) of the algorithm computes the kinematic structure of
an object. Now that we have performed object segmentation and 3D reconstruction,
this step becomes straightforward. The last factor reasons about discrete entities
(rigid links) to classify their relative motion into revolute motion, prismatic motion,
rigid connection, and disconnected motion.

Joint detection has to overcome one challenge: scale ambiguity. The 3D trajec-
tories obtained by the previous step of the algorithm are only correct up to a scaling
factor. Knowing the correct scale is important when comparing the trajectories of
two bodies, possibly reconstructed at scales s1 and s2. If s1

s2
6= 1, the estimated rel-

ative motion between the two bodies will be wrong, making it impossible to deter-
mine their correct kinematic relationship.

(a) Relative motion between two drawers
(prismatic joint)

(b) Relative motion between a laptop’s screen
and keyboard (revolute joint)

Fig. 4 The relative motion between two rigid bodies at three different relative scales. At the correct
relative scale (red), it is easy to infer the joint between the bodies.

Our algorithm searches for a scaling factor λ . This factor is used to re-scale the
first body so its new scale is λ · s1. For every joint type, the algorithm selects the
λ at which the relative motion between the bodies is best explained by that type.
The range in which we need to search for λ is limited, as object parts typically
have a similar size. The joint type that best explains the data is incorporated into the
kinematic model of the object.

Figures 4(a) and 4(b) illustrate the importance of correcting the relative scale
before determining the kinematic structure. The left image shows the relative motion



Interactive Perception of Articulated Objects 9

between two drawers at three different relative scales. The right image shows the
relative motion between a laptop’s monitor and keyboard. In both cases, the red
curve shows the correct scale (as detected by the algorithm). At this relative scale,
the algorithm correctly detects a prismatic joint between the drawers and a revolute
joint between the laptop’s screen and keyboard.

Once all joints have been identified, the kinematic structure of the articulated
object can be computed up to a single scaling factor. Scale ambiguity can now be
resolved using the robot’s proprioception to compute the true depth of one feature.

We now describe how the different joint types are detected, given the relative
motion of two rigid bodies and a hypothesis λ about their relative scale:

Revolute Joint: If two rigid bodies are connected by a revolute joint, features on
these bodies perform a relative motion in the form of parallel arcs centered on the
rotational axis. To compute whether a set of relative motion trajectories can be ex-
plained by a revolute joint, we project the trajectories onto a plane we compute from
the feature trajectories; this plane is orthogonal to the hypothesized rotational axis.
We then scale the projected trajectories and compute how well they match a unit
circle. Based on this match, the algorithm computes a confidence value, indicating
the degree to which it is certain that the two bodies are connected by a revolute joint.

Figure 5 illustrates the identification of revolute joints. The top row of images
shows the relative motion between two rigid bodies. The bottom row shows the
relative motion projected onto the plane, and scaled to best fit inside the unit circle.
In the left column, the relative motion trajectories have the form of parallel arcs, and
indeed, the projected trajectories match the unit circle well. The relative motion in
the right column belongs to two disconnected rigid bodies.

Prismatic Joint: If two rigid bodies are connected by a prismatic joint, features
on these bodies perform a relative motion in the form of straight, parallel lines of
equal lengths. The algorithm translates the relative motion trajectories to the origin
of an arbitrary coordinate frame. We then fit a cylinder around the projected trajec-
tories. Based on the diameter of this cylinder and the variance of trajectory lengths,
we determine a confidence value for the presence of a prismatic joint.

Rigid Joint: To detect a rigid joint, we simply search for a scale correction λ at
which the relative motion between the bodies is almost zero. If such a relative scale
exists, we declare the bodies to be rigidly connected. This type of joint is important,
as it can correct over-segmentation in the previous steps of the algorithm.

Disconnected Joint: In all cases, the algorithms computes a value indicating
its confidence in the detected joint type. If the algorithm’s confidence values for
the rigid, prismatic, and revolute cases are low, we declare the two bodies to be
disconnected (or connected by six degree-of-freedom joint).

4 Experimental Validation

We validate the proposed method for perceiving 3D rigid articulated objects in real-
world experiments. The experiments are conducted with our robotic platform for
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Fig. 5 Detecting a revolute joint (see text for details)

autonomous mobile manipulation (see Figure 1). The robot interacts with various ar-
ticulated objects (Figures 6 and 7). These objects vary in scale, shape, color, texture,
and kinematic structure. An off-the-shelf web camera with a resolution of 640×480
pixels provides a 30 frames-per-second video stream of the scene throughout the in-
teraction.

Figure 6 shows two experiments in detail, illustrating the performance of our al-
gorithm in identifying rigid bodies in an unstructured scene. The top row shows two
objects, a toy train and a cupboard, before the robot interacts with them. The second
row shows a snapshot of the interaction, the third shows the results of clustering
the tracked features into rigid bodies (edges of the graph are shown in white). The
fourth row illustrates the joints detected between the rigid bodies (purple lines) and
the clustered features (one color per cluster).

In the first experiment (left column of Figure 6), the robot interacts with a pris-
matic joint by sliding the cupboard’s door. The algorithm separates static from mov-
ing bodies. It also segments the static picture cube and the non-moving door as sep-
arate objects. The detection of the prismatic joint between the moving door and the
two static objects is done with a very high confidence value of 99.7%. The rigid
joint between the static door and the picture cube is detected with 100% confidence.

The second experiment (right column of Figure 6) shows an interaction with a
train toy by pushing its parts. Here, color segmentation alone would fail as each rigid
part is composed of multiple brightly colored blocks, and the base of the engine and
car have identical wooden texture. Instead, our algorithm relies on the strong motion
signal to distinguish between the static wooden figures and the two parts of the train.
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Fig. 6 Experimental results showing the process of perceiving the shape and kinematic structure
of articulated objects (see text for details).

The train’s revolute joint is detected with a confidence value of 97%. The train is
also segmented from the background by a disconnected joint with 95% confidence.

Figure 7 shows the results of eight additional experiments. Each image shows an
articulated object, overlayed with the joints detected between its rigid parts (pink
lines). We now describe these experiments (left-to-right and top-to-bottom).

In the first experiment, the robot pushes a tricycle, making the wheel spin. Joint
detection assigns high confidence values to a disconnected joint between the back-
ground and both the wheel and frame. It also discovers the revolute joint between
the wheel and the frame of the tricycle (99% confidence). Our algorithm works in
this case because it can detect and analyze any number of rigid bodies, even when
moving simultaneously.

The second experiment shows an interaction with an elevator. Here, the robot ac-
tuated the elevator by pressing a button. The algorithm correctly discovers three pris-
matic joints between the two doors and the frame of the elevator (all three confidence
values are above 95%). Two joints are between the the frame and the two doors; the
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Fig. 7 Experimental results showing the perception of 3D articulated objects (see text for details).

third joint—without physical manifestation—exists between the two doors and is
indicated by the longer purple line.

In the third experiment, the robot pushes a shelf on wheels. The algorithm sep-
arates the moving bodies from the static background. The objects on the top and
bottom shelves are identified as different rigid bodies, due to the large relative dis-
tance between them. However, the algorithm detects that the two bodies are rigidly
connected, effectively correcting for over-segmentation. Should the robot interact
with one of the objects by itself, of course, it would discover additional degrees of
freedom and update the kinematic model accordingly.

In the fourth experiment, the robot opens a door. The algorithm correctly sepa-
rates the door from its frame, and detects a revolute joint with 100% confidence.

The fifth experiment shows the result of interacting with a box. The algorithm
identifies three clusters: box, flap, and picture cube (static). It determines, with high
confidence, a revolute joint between the two box parts (97%) and that the flap is
disconnected from the background (93%). Joint detection is less certain about the
connectivity between the body of the box and the background (80% disconnected,
20% revolute). The lower confidence is due to the fact that the robot has actually
pushed the box along an arc. Another interesting property of our method is the abil-
ity to adapt to new evidence. Further interaction with the box is likely to generate
trajectories that are more difficult to explain as revolute, resulting in increased con-
fidence that the parts are disconnected.

In the sixth experiment, the robot interacts with a drawers cabinet (the image
is rotated 90 degrees counter-clockwise). The algorithm identifies the two drawers
and the frame. It detects the kinematic structure (the prismatic joints) with high
confidence (above 97% in all cases).

The seventh experiment shows the result of interacting with a laptop by pushing
it and opening the lid. Three clusters are identified: a static power supply, keyboard,
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and screen. The revolute joint between the keyboard and screen is detected correctly
(95%). The algorithm also detected that the screen is disconnected from the static
power supply (80%). The robot’s interaction with the laptop was such that it moved
along an arc. As a result, a revolute joint is detected between the keyboard and
the background (power supply), with a low confidence of 70%. Further interactions
would reveal that the keyboard is disconnected from the background.

In last experiment the robot opens a refrigerator door. The algorithm detects one
cluster associated with the refrigerator door and three static background clusters.
It detects a rigid joint between the static clusters and a revolute joint between the
door and the background with 100% confidence. Because the observed motion was
small, the position of the axis is not very precise.

In all experiments, the proposed algorithm detected, segmented, and tracked all
rigid bodies containing a sufficient number of visual features. The algorithm suc-
cessfully obtained the kinematic structure in 10 out of 10 experiments. It detected
the position and orientation of the joint correctly in 30 out of 31 cases. The one ex-
ception is the refrigerator experiment, in which the type of joint and the orientation
of the axis of rotation are correct, but the position of the axis is offset. Experiments
were performed under uncontrolled lighting conditions, different camera positions
and orientations, and for different initial poses of the objects. The demonstrated ro-
bustness and effectiveness provides evidence that the presented perception skill is
suitable for manipulation in unstructured environments.

For our experiments, we do not have available the ground truth of the kinematic
models in the scene. We therefore rely on visual inspection to judge the effectiveness
of our method. Ultimately, we will combine the proposed perceptual skill with ma-
nipulation skills. Then we will be able to determine if the accuracy of the extracted
kinematic models is sufficient to guide manipulation planning and execution. Given
the results presented here, however, we are confident that this is the case.

The greatest limitation of the described perceptual skill is its dependency on the
presence of trackable visual features on each of the rigid bodies. Given our low-
resolution camera, we had to add artificial features in seven of the ten experiments
(e.g. place a poster on a feature-less door). A foveated or higher-resolution vision
system would reduce the need for artificial features.

The runtime of all three steps of the algorithm depends on the number of tracked
features as well as the number of rigid bodies in the scene. In our experiments,
scenes were composed of 2-5 rigid bodies, and between 200 and 400 features were
tracked. The runtime of the algorithm varied from 5 to 10 minutes. We believe that a
significant improvement will be achieved by optimizing the implementation. Further
improvement could be achieved by parallelizing parts of the code.

5 Conclusion

We presented a perceptual skill for manipulation in unstructured environments. This
skill enables the autonomous acquisition of 3D kinematic models for articulated
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rigid objects in the world. This ability is a prerequisite for determining appropriate
motion plans for manipulation, monitoring a plan’s execution, detecting its comple-
tion, and identifying failures. To achieve this, the presented perceptual skill interacts
with the environment to cause the actuation of degrees of freedom, analyzes its ob-
servation of this interaction, and finally determines a fully instantiated kinematic
model of the observed objects.

Our experiments showed the successful acquisition of 3D kinematic models of
ten real-world objects. No prior knowledge of the objects was assumed. The kine-
matic models were accurate, even in the presence of substantial noise due to the use
of a low-quality camera. The proposed skill does require, however, visual evidence
of the kinematic degrees of freedom in the form of motion and a sufficient number
of trackable features on each of the rigid objects in the scene.

The skill’s robustness is a consequence of the careful decomposition into three
components. The first component identifies rigid objects in the scene, based on
2D feature trajectories. The second component applies structure from motion tech-
niques to identify the motion of features associated with a single object. The last
component determines the kinematic relationship between pairs of rigid bodies.
Each of the components is able to leverage structure inherent to the sub-problem,
thus allowing for a robust solution of the overall problem.
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