
Towards Reactive Whole-Body Motion Planning in Cluttered
Environments by Precomputing Feasible Motion Spaces

Andreas Orthey1,2, Olivier Stasse1

Abstract— To solve complex whole-body motion planning
problems in near real-time, we think it essentials to precompute
as much information as possible, including our intended move-
ments and how they affect the geometrical reasoning process. In
this paper, we focus on the precomputation of the feasibility of
contact transitions in the context of discrete contact planning.
Our contribution is twofold: First, we introduce the contact
transition and object (CTO) space, a joint space of contact states
and geometrical information. Second, we develop an algorithm
to precompute the decision boundary between feasible and non-
feasible spaces in the CTO space. This boundary is used for
online-planning in classical contact-transition spaces to quickly
prune the number of possible future states. By using a classical
planning setup of A* together with a l2-norm heuristic, we
demonstrate how the prior knowledge about object geometries
can achieve near real-time performance in highly-cluttered
environments, thereby not only outperforming the state-of-
the-art algorithm, but also having a significantly lower model
sparsity.

I. INTRODUCTION

Consider the problem in Fig. 1a: A highly-cluttered envi-
ronment has to be traversed by a humanoid robot, without
stepping onto obstacles on the ground. The goal is to find a
set of footsteps, which allows us to move the robot towards
the goal region. This problem is problematic from different
point of views: First, for each footstep we want to take, we
have to compute a control law for each degree of freedom
of the robot, such that we fulfill certain constraints like joint
limits, dynamics and stability. Second, we have to check if
the body of the robot is in collision with objects in the
environment. Due to the large number of objects and the
nearness of the robot to the objects, this is generally not
possible in real-time. In this paper, we provide an algorithm,
which generates a footstep path for a humanoid robot which
is faster than the state-of-the-art approach, and runs in real-
time even for challenging environment like the one in Fig.
1a, where 30 objects are randomly placed.

The underlying problem is the one of real-time planning
of motions for a high-dimensional degrees of freedom robot.
We approach this problem by using an approximation method
to precompute if a motion between two contact points will
be feasible. Our contribution is twofold: First, we introduce
the contact transition and object (CTO) space: The union of
a reduced set of contact points and the parameters of approx-
imated objects in the environment. Second, we perform an
analysis of the decision boundary between feasible and non-
feasible subspace within the CTO space. We hereby focus

1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, INP, LAAS, F-31400 Toulouse

(a) (b)

Fig. 1: Left: A highly-cluttered environment with 30 randomly placed
objects, where the robot has to avoid stepping onto objects, while reaching a
goal region. Right: Our algorithm finds a feasible footstep path in 0.3s by (1)
approximating objects with simple geometrical shapes and (2) adding this
geometrical information to the precomputation of the feasibility of motions.

on a sparse and approximate representation of this boundary,
which allows us to discriminate very fast between feasible
and non-feasible contact points.

This work can be seen as an additional simplification of
planning in the contact space of a robot [1]. It further devel-
ops the ideas of [2], which used the swept volume – defined
as ”the space, occupied by a robot during the execution”
[3] – to precompute if a motion between two contact points
will be feasible. We further advance this precomputation idea
by including the geometrical information of objects in the
environment.

The paper is organized by first considering related work
Section II. Section III will focus on background in contact
planning, motion generation and swept volume approxima-
tion. In Section IV we introduce the CTO space, Section V
discusses the sampling and approximation of the feasibility
function, and Section VI demonstrates the applicability of
our approach in a highly-cluttered environment.

II. RELATED WORK

We provide in this section a basic overview about contact
planning, with emphasis on footstep planning but also on
how to construct a general contact space framework. For
each approach, we focus on its relation to our work.

Chestnutt et al. [4], [5] pose the problem of footstep
planning as a discrete search problem, and are approximating
its heuristic by a mobile robot planner. Complementary to
their work we use a simple heuristic, and instead focus solely
on a fast decision about which steps will be feasible in the
present of obstacles.

Escande et al. [1] provide a complete framework for multi-
contact planning, in which they investigate how to choose

contact points, and how to generate paths between them.
Our work focuses on the first point, for which we provide
an approximate solution.

Hauser et al. [6] are planning general multi-contact points
for a humanoid climbing robot. Their approach focuses
on using motion primitives of contact points as an initial
trajectory for a sampling based algorithm. While their work
is concerned with finding a probabilistically complete algo-
rithm, we focus on simplifications for real-time planning.

Hornung et al. [7] are using a anytime variant of the
A* algorithm to plan footsteps for the Nao robot. This can
be seen complementary to our work, in which we try to
approximate the feasibility of footstep transitions.

Perrin et al. [2] are using swept volumes to approximate
the contact transition between footsteps. While they require
the storage of complete swept volumes for collision check-
ing, we devised an approximate mapping from contact points
to feasibility by incorporating the object geometry directly
into the precomputation process.

III. BACKGROUND

Our approach is based on three core topics, which will
be explained in the following sections: First, we introduce
the concept of contact-space planning to reduce the dimen-
sionality of a robotic system in Section III-A. Second, we
discuss how the whole-body motion of a robot is generated
between two contact points in Section III-B, and finally, we
introduce approximation via swept volumes in Section III-C.

A. Planning in Contact Space

Planning a movement for a robotics system, with many
degrees of freedom (dof), is commonly seen as intractable,
because their complexity is exponential in the number of dof
[8]. A simplification, which reduces the planning dimensions,
is the contact-space planning approach [4], [1], [6]. Planning
is posed as a discrete search problem of finding a sequence
of contact-points, which can be used to reach a desired
goal region. For transitions between contact-points, local
optimization methods can be used. In our work, we will make
the further simplification, that contact-points are restricted to
footsteps. The long-term goal of our research is the inclusion
of hand-environment contacts, which is why we formulate
our approach in terms of general contact-points, rather than
foot-contacts. We also note, that we are interested in fast
real-time planning methods, which is contrary to algorithms
which try to find a complete trajectory in the general contact-
point space [6], [1]. Earlier research in motion planning made
this distinction explicit by dividing algorithms into coarse
and fine motion planning [9] — whereby our work can be
considered coarse motion planning.

B. Optimal whole-body motion between contact points

For finding a trajectory between two contact points xI

and xG, we assume that there is an optimization function
p : RM × K → Rd, which maps a contact point x, of
dimension M , into a joint configuration q, of dimension d,
which we will call a contact configuration. The space K

defines a behaviour of the robot, i.e. how the rest of the
body is positioned. Given one behaviour, and assuming zero
noise, the mapping p is uniquely defined, so that we can
further operate on contact configurations, without loss of
generality. Between two contact configurations qI and qG,
we then utilize a local optimization function formalized as a
classical optimal control problem

minimize
u

tf∫

t0

C(u(t), q(t))dt

subject to q̇(t) = f(q(t), u(t))

whereby q(t) is the configuration at time t, u(t) is the
control input, f is the dynamics of the robot, and C is
the cost function, which could depend on the task and the
behaviour we want to achieve. We now assume the existence
of an algorithm g, which solves the whole-body generation
problem between two contact configurations:

qqI→qG = g(qI , qG, C) (1)

whereby qqI→qG is the final trajectory of the robot, qI
and qG are the start and the goal configurations, and C is
the above mentioned cost function. Besides being a non-
chaotic system, we make no restrictions on the optimization
algorithm g and the cost function C. Therefore, we can make
use of potential functions [8], nonlinear attractors like the
dynamical motion primitive [10], stochastic optimal control
solvers [11], or – as in our case – a hierarchical null space
control framework, called the stack of task [12]. In this
case, we use costs depending on distance to self collisions,
distance to joint limits, and dynamical stability.

In the absence of noise, we assume that the optimization
problem is uniquely defined, i.e. for a pair of qI ,qG, optimizer
g, and cost function C, g returns one unique trajectory.

C. Swept-Volume Approximations

The unique trajectory from Eq. (1) defines directly a
swept volume of the robot body [2], which we will denote
as SVqI ,qG . The number of possible contact transitions is
infinite and needs to be reduced to make planning com-
putationally tractable. We therefore use a set of N contact
points, which are a discretization of all mechanically feasible
footsteps of the robot. This implies the computation of

(
N
2

)

swept volumes (one for each transition pair). By adding
a waypoint, as reported in [2], one can assume, that each
transition will have a common end point, which prunes the
number of swept volumes to N . Using this setting, Perrin
et al. [2] have demonstrated real-time motion planning in a
constrained environment with fixed upper body and stepping
capabilities. Our goal in the next section is to show, how to
speed up this approach by (1) introducing the geometry of
objects directly into the precomputation algorithm and (2)
approximating the decision boundary between feasible and
non-feasible space in the joint space of objects and contact
points.

IV. CONTACT TRANSITION AND OBJECT (CTO) SPACE

To plan a discrete set of contacts for a robot, we want
to precompute if the transition between two contact points
is feasible. The feasibility is a function of the environment
and the underlying controller. It is therefore necessary to
represent the environment, which we do by using an object-
centered approach and by fitting generalized geometrical
shapes to those objects.

To decide if a contact transition will be feasible, a common
approach [2] is to use precomputed swept volumes for
each contact transitions and check each swept volume for
collisions with all visible objects in scene. In this work,
we go one step back and analyse directly the joint space
of contact points X and objects O . Instead of recalling the
swept volume and doing collision checking to determine
feasibility, our goal is to approximate a feasibility function
f : X×O → R directly by learning a discriminative function
of the form f̂ : X × O → R, such that we minimize the
distance between them.

For making this tractable, we apply two simplifications:
First, we use a discrete set of contact points X̃ , which was
obtained from all possible contact points X by (A) utilizing
the symmetries of the robot body and a waypoint contact
as discussed in section III-C, (B) uniformly discretizing
contact points from X , and (C) pruning contact points not
satisfying internal constraints — like joint limits and self
collisions. This provides us with a set of N contact points,
which all have the same common goal contact point xG.
For example to go from an arbitrary contact x0 to another
contact x2, we concatenate x0 to xG, and xG to x2. The
contact points are a set with an underlying structure, in this
case an geometrical ordering (position of contacts) and a
metric (distance between contacts). Set and structure define
together a mathematical space, such that we can define:

Definition 1 (Reduced Contact-Transition Space): A dis-
crete set of contact points x0, · · · ,xN , which have a com-
mon goal contact point xG

X̃ = {x0, · · · ,xN} (2)

In this paper, one contact point is defined as x =
{(x, y, θ, q̄)T |x, y, θ ∈ SE(2), q̄ ∈ {L,R}}, whereby x, y
are the middle point of one foot, and θ is the inclination,
and q̄ is the support foot.

Second, we observe that the detailed shape of an object
is not important for coarse motion planning [9], where one
is interested in a first reasonable guess of the trajectory. We
therefore build the reduced object space Õ from the complete
object space O by assuming that objects can be approximated
by basic geometrical shapes. As an intermediate representa-
tion between a set of basic shapes (cylinder, sphere, box)
and a complete mesh triangle representation, we utilize a
generalization of basic shapes, called the superellipsoid. The
superellipsoid allows us to describe different basic shapes by
one formula with a sparse set of parameters [13]

S(x, y, z; ~θ,~λ) =

((
x

λ1

) 2
θ2

+

(
y

λ2

) 2
θ2

) θ2
θ1

+

(
z

λ3

) 2
θ1

(3)

whereby ~θ > 0 specifies the shape (e.g. a cylinder),
and ~λ > 0 specifies the elongations along the axes (e.g.
the height and radius of a cylinder). Eq. (3) is called the
inside-outside function, referring to points x, y, z as being
outside the object for S(x, y, z) > 1 and inside or on the
surface for S(x, y, z) ≤ 1. Examples include the ellipsoid
(θ1 = 1, θ2 = 1), cylindroid (θ1 ≪ 1, θ2 = 1) and the
quader (θ1 ≪ 1, θ2 ≪ 1). For this work, we restrict objects
to the cylindrical space by defining

Definition 2 (Reduced Object Space): The set of objects
o, which can be approximated by a superellipsoid in the
form

Õ = {(x, y, φ, ~θ, ~λ)T |x, y, φ ∈ SE(2),

~θ = (0.01, 1)T ,

~λ ∈ R+)}
(4)

Together with the contact points, we can now define the
CTO space:

Definition 3 (Contact Transition and Object Space): The
union of reduced contact space and reduced object space

CCTO = {X̃ ∪ Õ} (5)

Having defined the CCTO space, the rest of the paper is
devoted to the computation of the decision boundary between
the feasible subspace and the non-feasible subspace. This
is formulated as finding a discriminative function f̂ , which
minimizes an optimization problem of the form

argmin
f̂

||f(x,o)− f̂(x,o)||2

s.t. o ∈ Õ ,x ∈ X̃

Whereby f and f̂ are computing the feasibility of a contact
transition as depicted in Fig. 2: f first optimizes a controller
to traverse the contact points, then computes the swept
volume along its trajectory and finally conducts collision
checking with objects in the environment; f̂ simplifies this
computation by acting as a discriminative function for the
CCTO space, to directly decide if a contact transition and an
object are in the feasible subspace. In the next section, we
will focus on the sampling of f and its approximation f̂ .

V. PRECOMPUTATION OF DECISION BOUNDARY IN CTO
SPACE

To estimate f̂ , we first generate samples from the true
feasibility function f . This requires the definition of a
probability distribution, which provides us samples near the
decision boundary, such that objects have a distance of d ≈ 0
to the swept volume. A particularity of this distribution is its

f(x, o) : X̃ ×O → {0, 1}

Contact X̃ Optimizing Controller

Swept Volume

Collision Checking

Feasibility

Object O

CCTO = {X̃ , Õ}

x ∈ X̃

f(x, o)

o ∈ O

O → Õ

f̂(x, o)

Fig. 2: From Contact Transitions to Feasibility. Dashed lines present
the precomputation functions, which form a shortcut for efficient online
planning

elongated shape, which requires the usage of a momentum
variable to efficiently sample the distribution.

After acquiring samples, we finally discuss the estimation
procedure for f̂ by using nonlinear discriminative analysis
[14].

A. Sampling of the feasibility function

We divide the sampling stage of f̂ into two phases:
First, we acquire N contact points by using an uniform
discretization. We recall, that every contact point has a
unique goal, and together with a controller defines implicitly
a unique trajectory. The unique trajectory in turn defines a
swept volume by using a function S : X̃ → T , whereby T
will be a triangle mesh. The complete set of swept volumes
can then be defined as

SV1:N = [S(x1), . . . ,S(xN)] (6)

For each swept volume, we start obtaining samples oi ∈
Õ , by defining a probability distribution, which provides us
with the properties we want: High probability around the
decision boundary, low probability otherwise. One possible
choice is the normal distribution, defined as

p(xj , oi) = N (d[S(xj),M(oi)];µ = 0, σ) (7)

whereby M computes the triangle meshes of the object i at
position oi, S(xj) is the swept volume from contact position
xj , and d is defined as the norm between the nearest points
on the object and on the swept volume – or the farthest points
inside the swept volume, if the object is in collision. Finally
the standard deviation σ is a measurement of how much we
tolerate samples away from the boundary.

Eq. (7) is an elongated probability distribution, which can
be very narrow, depending on our choice of σ. Therefore,
standard sampling techniques like the Markov Chain Monte
Carlo (MCMC) algorithm will generally be inefficient, i.e.
require too many samples before converging to the stationary
distribution [14]. One algorithm, which can handle elon-
gated distributions is the Hamiltonian Monte Carlo (HMC)

algorithm [15], which adds a momentum variable to the
sampling process, in order to faster converge to the stationary
distribution. The most important feature of HMC is its ability
to follow the contour curve of the distribution by simulating
the hamiltonian dynamics. In our case, this translates to
following the decision boundary of the CCTO space. The un-
derlying algorithm to simulate this contour-curve following
behaviour is called the leap-frog algorithm, and progresses
by using a number of steps τ and step width ǫ. The initial
momentum in a certain direction is defined by a proposal
distribution. In our experiments, we used ǫ = 0.3, τ = 13 and
a multivariate normal distribution N (µ,Σ) = N (0, 0.09 · I)
as the proposal. For Eq. (7), we have chosen σ = 0.17.

For simplifications, we consider in our experiments objects
approximated by a cylindrical representation, by setting the
θ parameters of Eq. (3) to θ1 = 0.01, θ2 = 1. The
λ parameters are allowed to vary, and are defined for a
cylindrical representation as λ1 = λ2 = r and λ3 = h,
whereby r is the radius of the cylinder and h the height.
Sampling is then conducted explicitly in the space of Õ =
{(x, y, r, h)T |x, y ∈ R, r, h ∈ R+}.

B. Nonlinear Discriminative Analysis

After obtaining the samples from the true function f , we
have to select a model to approximate f by f̂ . The choice of
this model is mainly determined by its online performance:
The more often we can call the function per second, the
better will be our planning performance. One widely used
choice is the multilayer perceptron (MLP), which can lead
to compact models and faster evaluation, but is harder to train
than common kernel machines, because its objective function
is non-convex [14]. Because we need to reduce the time for
online performance as much as possible, we have chosen the
MLP with one hidden layer and trained the network from the
sampled data by utilizing the FANN1 library.

1) Network Optimization: We applied several standard
machine learning tricks to obtain a robust and stable ap-
proximation of f̂ . First, we splitted our training data into a
training set (70%) and a validation set (30%) and used an
early stopping criterion by observing the model error on the
validation set. Second, we used multiple restarts with random
initializations. Third, we combined two samplers to avoid
spurious non-feasible regions: A uniform coarse sampling
technique to avoid spurious non-feasible regions, and the
aforementioned HMC algorithm to accentuate the decision
boundary.

Finally, we summarized the essentials steps of the pre-
computation in Algorithm 1. For each contact point x ∈ X̃ ,
we first compute the whole-body motion to the waypoint
xG, by using the optimizer g and cost function C. The
resulting trajectory qqI→qG defines a swept volume SV ,
which we approximate by using a function S . For the
class of objects Õ , we acquire M samples o1:M by using
the HMC sampling algorithms with parameters τ and ǫ.
Afterwards, we split our sampling data and start the nonlinear

1http://leenissen.dk/fann/

Algorithm 1 Precomputing feasible motion space

Require: C, Õ , τ > 0, ǫ > 0, H > 0,M > 0
function PRECOMPUTE(C, Õ ,M,H, τ, ǫ)
F ← ∅
for all x ∈ X̃ do

qqI→qG ← g(x,xG, C) [12]
SV ← S(qqI→qG) [2]
o1:M ← Sampler(SV, Õ ,M, τ, ǫ) [15]
otrain,ovalidation ← split(o1:M)
f̂ ← NDA(H,otrain,ovalidation) [14]
push(F , f̂)

end for
end function

Fig. 3: Influence of the model complexity on the approximated feasibility
function: Each graph shows the object space Õ for the same swept volume
with changed complexity parameter H . For visualization, we have shown
the non-feasible regions for the (x, y, r)T parameters of a cylinder, whereby
we fixed h = 0.03. Shown is the isosurface of the feasibility function for
the zero value, first the real feasibility function (green), and second the
approximated function f̂ (red). Depending on the complexity parameter H
of the model we can observe different performances: a low complexity like
H = 4, leads to an underfitting of f̂ , while a high complexity H = 28
leads to overfitting, visible by several spurious non-feasible regions. The
goal is to find a parameter, like H = 16, which balances model complexity
and error rate.

discriminative algorithm to approximate f̂ . f̂ is finally saved
in our complete feasibility structure F .

C. Algorithmic analysis

The offline-precomputation of the feasibility function re-
quired ∼6 hours on a 8 core, 3.0Ghz PC with 8GB working
memory. The online performance requires the computation
of two matrix multiplications in our MLP, and therefore
scales with O(H ∗ (N + 1)), whereby H is the complexity
parameter and N the number of dimensions of Õ . At the
moment, we have no theoretical guarantee that the algorithm
is strictly conservative, i.e. that it declares a footstep as
valid, if it is not. We could approach this by proving that
the derivative of the feasibility function is bounded, i.e.
K-lipschitz continuous, and using this as a hard constraint
during the optimization of the approximated model.

VI. EXPERIMENTS

In our experiments, we use a feasibility function f̂ with
a reasonable model complexity of H = 16, which avoids
under- and overfitting, as discussed in Fig. 3. We refer to this

Fig. 4: A cluttered environment, which we consider in our experimental
verification. A number of cylinders are used as obstacles, and determines
the complexity of the scene. In a real world setting, those cylinders would
correspond to approximations of objects, similar to the chair in Fig. 1.

algorithm as FP (16), whereby FP stands for feasibility pre-
computation. For comparison, we use a reimplementation of
the swept volume approximation (SVA) algorithm, proposed
by [2], which stores swept volumes for each action, and
afterwards used a collision checking algorithm for feasibility
checks [16]. Both algorithms are integrated into our planning
framework, and tested in a challenging environment, where
we randomly place objects.

A. Planning

For planning, we utilize a standard A* algorithm [8]
with a classical euclidean l2-norm heuristic to the goal. The
heuristic is complementary to our work: We focus not on the
heuristic, but on approximating the extension of nodes in the
graph search. The choice of the heuristic can further speed
up planning [4], but is beyond the scope of this work.

B. Walking in Cluttered Environment

To evaluate and compare the performance of our feasi-
bility precomputation, we consider a highly-cluttered and
constrained environment, where K small objects are located
randomly over a flat, horizontal floor, as visualized in Fig. 4.
We generate the objects by using a uniform sampler U and
bounding cylinders in the form of x = U(−0.8m, 0.8m), y =
(0.2m, 2.8m), r = U(0.01m, 0.03m), h = U(0.01m, 0.1m).

The robot is allowed to set footsteps, which are constrained
to be between x = [−0.8m, 0.8m] and y = [−0.2m, 3.2m].

The planning tasks is to move the feet, starting with the
left foot at coordinates (xI , yI) = (0, 0), towards the goal
at (xG, yG) = (3, 0), i.e. having one foot in the vicinity
(< 0.3m) of the goal. We compare the two approaches,
mentioned above: For the SVA algorithm, we obtain the
cylinders as triangle meshes from the simulator and store
them offline for efficient collision checks. For FP (16), we
use the x, y, r, h values as the input for f̂ . Before each
execution, we apply a homogeneous transformation to move
the object into the coordinate system with the support foot as
origin, such that they coincide with the precomputation stage.

0

20

40

T
im

e
 [
s
]

0

20

40

S
te

p
s

0 20 40 60 80 100 120
0

0.5

1

Objects

S
u
c
c
e
s
s

SVA

FP(16)

Fig. 5: Comparison between swept volume approximations (SVA) [2]
(green) and the precomputation of the feasibility function (red). Each point
represents the average over 100 trials in the cluttered environment situation,
where the robot had to traverse a distance of 3.0m, while avoiding M
objects, randomly distributed on the floor.

Moreover we prune all objects, which have a certain distance
to the robot (< 1.1m) before we apply the algorithms.

Fig. 5 shows the performance of the two algorithms on
this task: In the first row, we show the average planning
time for successful plans versus the number of objects in the
scene. It can be seen, that the time for planning with the
SVA algorithm (green) increases rapidly with the number of
objects. In comparison, our algorithm (red) increases only
marginally and stays bounded by < 1s even for N = 60
objects. Also, we obtain a lower number of steps toward
the goal as seen in the second row. The last row shows the
success rate of the planner, i.e. after a fixed time T , we stop
the planner and consider the task unsuccessful. Those tasks
are cleared from our system and are not considered for the
time and step graphs.

VII. CONCLUSION

In this work, we presented the contact transition and
object space, a joint space of contact points and geomet-
rical information of approximated objects. We developed an
algorithm to precompute the feasibility of specific objects
and contact points, by approximating the decision boundary
between feasible and non-feasible subspaces. As a result we
obtain a sparse discriminative function, which allowed us
to quickly prune non-feasible contact-points – while at the
same time preserving the important stepping-over capability
of humanoid robots.

In our simulated experiments, we demonstrated that our
approach can be used to generate whole-body motions for
a humanoid robot in highly-cluttered environments in near
real-time, thereby outperforming a state-of-the-art algorithm,
which used swept volume approximations. Moreover, our al-
gorithm has a significantly lower memory fingerprint: instead
of saving the complete swept volumes, we require only the
model parameters of our discriminative function to be saved.
This comes at the price of a lower accuracy at run-time: due
to the approximation of the objects by simple geometrical

shapes, we lose the ability to move close to objects and
conduct for example fine-manipulation planning. However,
for certain behaviors like walking, fine-manipulation is per
se not required. Also, we see our method as a first reasonable
guess of the trajectory, which could be further refined locally.

Possible future research directions are the incorporation of
object velocities into the precomputation, the estimation of
the decision boundary for the general superellipsoid space
of objects, the augmentation of the action space and the
verification on our robotics platform using vision systems.
As a natural extension we are going to consider multi-
contact point planning and the implementation of different
control strategies, such that we can switch very fast between
behaviors like walking, crouching and holding objects while
walking.

ACKNOWLEDGMENT

The research in this paper was supported by the KoroiBot
EU-FP7 Project, OSEO/Romeo2 and the French Ministry of
Higher Education and Research.

REFERENCES

[1] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for
humanoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5,
pp. 428 – 442, 2013.

[2] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume
approximations,” IEEE Transactions on Robotics, vol. 28, no. 2, 2012.

[3] P. Jiménez, F. Thomas, and C. Torras, “Collision detection algorithms
for motion planning,” in Robot Motion Planning and Control, J.-P.
Laumond, Ed. Berlin: Springer-Verlag, 1998, pp. 1–53.

[4] J. Chestnutt, “Navigation and gait planning,” in Motion Planning
for Humanoid Robots, K. Harada, E. Yoshida, and K. Yokoi, Eds.
Springer London, 2010, pp. 1–28.

[5] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
(ICRA), 2005.

[6] K. K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using
motion primitives in probabilistic sample-based planning for hu-
manoid robots,” in WAFR, ser. Springer Tracts in Advanced Robotics,
S. Akella, N. M. Amato, W. H. Huang, and B. Mishra, Eds., vol. 47.
Springer, 2006, pp. 507–522.

[7] A. Hornung, D. Maier, and M. Bennewitz, “Search-based footstep
planning,” in ICRA Workshop on Progress and Open Problems in
Motion Planning and Navigation for Humanoids, Karlsruhe, Germany,
2013.

[8] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[9] Y. K. Hwang and N. Ahuja, “Gross motion planning – a survey,” ACM
Comput. Surv., vol. 24, no. 3, pp. 219–291, 1992.

[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[11] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in ICML, 2009, p. 132.

[12] N. Mansard, O. Khatib, and A. Khedar, “A unified approach to
integrate unilateral constraints in the stack of tasks,” IEEE Transaction
on Robotics, vol. 25, no. 3, June 2009.

[13] A. Barr, “Superquadrics and angle-preserving transformations,” Com-
puter Graphics and Applications, IEEE, vol. 1, no. 1, pp. 11–23, 1981.

[14] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, 2006.

[15] R. M. Neal, “MCMC using Hamiltonian dynamics,” in Handbook of
Markov Chain Monte Carlo, S. Brooks, A. Gelman, G. Jones, and
X. Meng, Eds. Chapman and Hall/CRC Press, 2010.

[16] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Technical Report TR99-018,
Department of Computer Science, University of North Carolina, Tech.
Rep., 1999.

