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The Riemannian center of mass (RCM) [Karcher, 2014] is a generalization
of the center of mass to manifolds. In Euclidean space, the center of mass is
the unique point of a kinematic system where, if we would support the system
at this point, the system would be perfectly balanced. In euclidean space with
N points, this can be formulated using the weighted arithmetic mean as

xCM =

N∑
i=1

wi · xi

N∑
i=1

wi

(1)

whereby xCM is the center of mass (CM) for points {x1, · · · , xN} ∈ Rm and wi

are non-negative weights. We assume in the following without loss of generality

(w.l.o.g.) that
N∑
i=1

wi = 1, which can be thought of as a rescaling of the weights.

This does not change anything in the equations.

1 Vector Field Formulation

When the points do not lie in Euclidean space, but on a manifold M , the case
becomes more complicated. Computing the CM would result in a CM outside
the manifold M , which does not represent a valid point. A way to deal with
this case was presented by german mathematician Hermann Karcher [Karcher,
1977, 2014]. His idea was to formulate the Euclidean center of mass as a vector
field on Euclidean space, which he defined as

V (x) =

N∑
i=1

wi · (xi − x). (2)

This represents for any point x ∈ Rm a direction which points towards the
center of mass. This can be seen by realizing that (a) the vector field vanishes
at xCM, and that (b) if x is a random point, then the direction vector from V at
x equals xCM − x, i.e. it points towards xCM. Both of those claims are proven
in Sec. 2.1.
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2 Vector Field on Manifolds

It turns out that such a vector field formulation can be transferred to an ar-
bitrary manifold M . Karcher Karcher [2014] does it in the following way: He
notes that V (x) represents a tangent vector on the Euclidean space along a
straight line towards the center of mass. Since M is probably curved, we would
V (x) like to represent a tangent vector along the geodesic from x to xCM.

Finding the mean then amounts to following the gradient of this vector
field. A computationally efficient way is to compute the RCM incrementally
[Salehian, 2014][Ch. 3]. The idea is simple and analogues to the euclidean case:
If we start with two points, the mean lies in the middle of the geodesic (shortest
path) between those two points. Once we add a third point, we need to move
the mean towards the third point. How much do you ask? Well, its influence is
exactly one third, because the mean accounts for two thirds since it was created
by two points. On the manifold, you do the same, but now we move along
geodesics.

In general, if an N -th point xN ∈ M is added, we move a distance of 1
N

along the geodesic from the previous mean point mN−1 to the new xN point.
The incremental update rule for the mean is then

mN = mN−1 + γ

(
1

N

)
(3)

whereby γ : [0, 1] → M is the geodesic on M from γ(0) = mN−1 to γ(1) = xN

and m1 = x1. Note that the RCM is a local property, i.e. it might not unique.
Think about two points directly opposite on a circle—two possible solutions are
valid center of masses.
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2.1 Proofs

2.1.1 Vector field vanishes

To see that the vector field vanishes at xCM, we can put it into equation (2).

For convenience and without loss of generality, we assume that
N∑
i=1

wi = 1.

V (x) =

N∑
i=1

wi · (xi − xCM)

=

N∑
i=1

wi · (xi −
N∑

k=1

wk · xk)

=

N∑
i=1

wixi −
N∑
i=1

wi

N∑
k=1

wkxk

=

N∑
i=1

wixi(1−
N∑
i=1

wi)

=

N∑
i=1

wixi(1− 1)

= 0

2.1.2 Vector field points towards center of mass

To see that the vector field points towards xCM at any point x, we can put it
into equation (2).

V (x) =

N∑
i=1

wi · (xi − x)

=

N∑
i=1

wixi −
N∑
i=1

wix

= xCM −
N∑
i=1

wix

= xCM − x
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