
Policy Gradients

Andreas Orthey

The core idea behind policy gradients is to parameterize the policy π (the
mapping from states to actions) using a parameter vector θ. This is advanta-
geous for continuous state spaces and for problems with large state and action
spaces. The policy πθ can be thought of as a functional approximation to the
policy. An example of a parameterized policy would be a linear weighting of
basis functions like πθ = θTF (s, a) whereby F (s, a) is a set of basis functions
[Basis function(2018)]. Another option would be the weights of a neural net-
work. In any case, our goal is to select the best policy by selecting the best
parameter vector.

To select the best parameter vector, we first need to define a cost function
over policies. We call this cost function J(πθ). While many cost functions
are possible, we like to select the cost function which maximizes our expected
reward over policies. The concrete cost function we choose here is the cumulative
reward over trajectories as

J(πθ) = Eξ∼Pπθ

[∞∑
t=0

γtR(st, at)

]
, (1)

whereby γ is the discount factor, R(s, a) is the reward, ξ is a trajectory ξ =
(s0:T+1, a0:T) (which is the set of states and actions we reach if we play a certain
policy) and Pπθ

is the probability distribution over trajectories (think about it
as a set from which we can sample). To evaluate a policy, we thereby evaluate
trajectories. Each trajectory gives us a certain cumulative return. The trick
with policy gradients is to differentiate our cost function with respect to θ. This
differentiation gives us the steepest descent in parameter space (and thereby in
policy space). What we can do now is to follow this steepest descent until we
converge to a local minimal solution. Concrete, this means that we make small
steps in the steepest descent direction as

θ′ ← θ − α∇θJ(πθ), (2)

with α being the step size and ∇θJ(πθ) being the derivative of the cost function
with respect to θ. We continue this procedure until we converge (measured
by error between θ′ and θ) to a local minimum (or fixpoint) of the parameter
landscape, which minimizes the cost function J(πθ). The major difficulty in
this approach is to evaluate efficiently the derivative of the cost function.

1

1 Derivation of Policy Gradients

Our goal is therefore to differentiate the cost function J(πθ). To do this, we
need to find a numerical representation of the gradient ∇θJ(πθ) which we can
compute. One possible way is to rewrite the gradient in the following way (each
step is explained in detail below):

∇θJ(πθ) = ∇θ Eξ∼Pπθ

[∞∑
t=0

γtR(st, at)

]
(Definition)

= ∇θ

∫
ξ

Pπθ
(ξ)R(ξ)dξ (Expand the Expectation)

=

∫
ξ

Pπθ
(ξ)∇θ logPπθ

(ξ)R(ξ)dξ (Log-Derivative Trick)

= Eξ|θ{∇θ logPπθ
(ξ)R(ξ)} (Return to Expectation)

= Eξ|θ{
Tξ∑
t=0

∇θ log π(at|st)R(ξ)} (Grad-log-prob)

Before continuing with detailed descriptions of each step, please note that the
last expression of the gradient can be numerically calculated. To do that, you
would take your start policy π and follow it until termination. At each step,
you compute the log and gradient of the policy and multiply by the reward you
obtain. Doing this iteratively, gives you a way to (locally) minimize the cost
over policies by applying gradient descent as in Eq. 2.

We now will discuss each of the five steps in the derivation. The first step is
the definition, which was already motivated in the last section. We thus need
to detail the next four steps.

1.1 Expand the Expectation

In the second step, we expand the expectation. To do this, we first make the
probability distribution over trajectories explicit as

Pπ(ξ) = P (s0)

T∏
t=0

π(at, st)P (st+1 | st, at). (3)

Note that in the non-stochastic case, every policy has a unique trajectory which
provides a unique cumulative return (cost). However, in the stochastic case, we
need to compute the probability distributions over trajectories and estimate the
expected return.

In the expansion of the expectation, we next take the sum (integral) over all
possible trajectories and weigh their cumulative return by their probability of
occurrence under the application of the policy. A trajectory which is likely to
occur will count more than a trajectory which is less likely to occur.

2

1.2 Log-Derivative Trick

Next, we bring the gradient inside the integral. Since R(ξ) does not depend on θ,
we can apply the gradient to the probability distribution. We then apply the log-
derivative trick which uses the logarithm identity from calculus: ∇x log(f(x)) =
∇xf(x)
f(x) [Logarithmic derivative(2018)]. If we put in Pπθ

and rearrange we get

∇θPπ(ξ) = Pπ(ξ)∇θ logPπ(ξ). (4)

The reason for this rearrangement is that the gradient of the logarithm is often
much easier to compute.

1.3 Return to Expectation

In the next step, we return again from the integral representation to the expec-
tation.

1.4 Grad-log-prob

Finally, we rewrite the gradient logarithm as

∇θ logPπ(ξ) = ∇θ logP (s0) +

T∑
t=0

(∇θ logP (st+1|st, at) +∇θ log πθ(at|st))

(5)

=

T∑
t=0

∇θ log πθ(at|st), (6)

whereby we took advantage of the fact that both P(s0) and P (st+1|st, at) are
independent of θ and therefore evaluate to zero under derivation with respect
to θ.

2 Additional Material

Here are some additional resources to learn about policy gradients.

• Good introduction by OpenAI https://spinningup.openai.com/en/latest/
spinningup/rl_intro3.html

• https://danieltakeshi.github.io/2017/03/28/going-deeper-into-

reinforcement-learning-fundamentals-of-policy-gradients/

• Helpful material https://jonathan-hui.medium.com/rl-policy-gradients-
explained-9b13b688b146

3

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
https://jonathan-hui.medium.com/rl-policy-gradients-explained-9b13b688b146
https://jonathan-hui.medium.com/rl-policy-gradients-explained-9b13b688b146

References

[Basis function(2018)] Basis function. Basis function — Wikipedia, the
free encyclopedia, 2018. URL https://en.wikipedia.org/wiki/Basis_

function.

[Logarithmic derivative(2018)] Logarithmic derivative. Logarithmic derivative
— Wikipedia, the free encyclopedia, 2018. URL https://en.wikipedia.

org/wiki/Logarithmic_derivative.

4

https://en.wikipedia.org/wiki/Basis_function
https://en.wikipedia.org/wiki/Basis_function
https://en.wikipedia.org/wiki/Logarithmic_derivative
https://en.wikipedia.org/wiki/Logarithmic_derivative

