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A Markov decision process (MDP) is a tuple (S,A,R, P ) with S being the states, A being the
actions, rewards R = R(s, a) which you get when in state s and applying action a and a transition
probability P = P (s′ | s, a) which gives the probability of ending in state s′ if we are at state s
and apply action a. Additional information can be an initial state probability distribution P (s0),
which tells us where we likely will start. If rewards are non-deterministic (same action and state
transition might lead to different rewards), you need to replace R(s, a) by a probability distribution
P (r | s, a). We consider here only stationary MDPs, which are independent of time. To define a
non-stationary MDP, every state, action and reward becomes time dependent, i.e. s → st, a → at
and r → rt.

Given an MDP, our goal is to find an optimal policy π⋆(s). A policy tells us, in each state,
which action to take. An optimal policy gives us the action which will optimize a cost function
over rewards. A commonly used cost function is the expected discounted reward over an infinite
horizon, which we define as

π⋆(s) = argmax
π

Eπ

{ ∞∑
i=0

γiri | s

}
. (1)

There are two main motivations for this formulation. First, it makes intuitively sense to max-
imize the cumulative reward over all future actions. Rewards close in time should have a bigger
influence because we should try to avoid disastrous outcomes (airplane crashing, humanoid robot
falling down). Actions further away in time could potentially be fixed at a later time and are there-
fore less important. Second, this formulation allows us to write algorithms which can be shown to
converge to the optimal policy. This would, however, not work if we use e.g. γ = 1.

1 Terminal states

Let us assume that we want the MDP to end at some point. This can be modeled by adding a
Nirvana state sN to our MDP, i.e. we increase our state space with S = S ∪ sN . This state has a
transition probability of

P (s′|s = {sN , sT }, a) =

{
1 if s′ = sN

0 otherwise.
(2)

and returns a reward of R(sN , a) = 0. The total return for the agent is then given by

∞∑
t=0

γtrt =

T∑
t=0

γtrt +

∞∑
t=T

γtR(sN , a) =

T∑
t=0

γtrt. (3)
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