Geometry of quaders on top of surface elements of polytopes

Andreas Orthey

Let us give an explicit expression for a quader which is hovering on top of a surface element of a polytope. First we start with the definition of a polytope [Boyd and Vandenberghe(2004)]:

Definition 1. Let an object O_i be a convex bounded polytope

$$O_i = \{ x \in \mathbb{R}^3 | a_j^{(i)T} x \le b_j^{(i)}, \| a_j^{(i)} \|_2 = 1, j \in [1, M_i] \}$$
(1)

with M_i the number of halfspaces.

Let us take one surface element S_i^p of O_i . This is defined as:

Definition 2 (Surface Element). Given an object O_i , we call

$$S_{i}^{p} = \{x \in \mathbb{R}^{3} | a_{p}^{(i)T} x = b_{p}^{(i)}, a_{j}^{(i)T} x \leq b_{j}^{(i)}, \\ j = 1, \cdots, p - 1, p + 1, \cdots, M_{i} \}$$

$$(2)$$

the p-th surface element of object O_i , and $a_p^{(i)}$ is the surface normal with distance $b_p^{(i)}$ to the origin.

A quader on top of S_i^p can now be defined as

Definition 3. The quader $B_i^p(\Delta_L, \Delta_U)$ of height $\delta = \Delta_U - \Delta_L$ located with distance Δ_L above S_i^p is defined as the set of points in

$$B_{i}^{p}(\Delta_{L}, \Delta_{U}) = \{ x \in \mathbb{R}^{3} | -a_{p}^{(i)T} x \leq -b_{p}^{(i)} - \Delta_{L}, \\ a_{p}^{(i)T} x \leq b_{p}^{(i)} + \Delta_{U}, \\ \hat{a}_{j}^{(i)T} x \leq \hat{b}_{j}^{(i)}, \\ j = 1, \cdots, p - 1, p + 1, \cdots, M_{i} \}$$

$$(3)$$

with $\hat{a}_{j}^{(i)}, \hat{b}_{j}^{(i)}$ belonging to the projected hyperplane j, with

$$\hat{a}_{j}^{(i)} = a_{j}^{(i)} - (a_{j}^{(i)T} a_{p}^{(i)}) a_{p}^{(i)}
\hat{b}_{j}^{(i)} = \hat{a}_{j}^{(i)T} x_{j,0}^{(i)}$$
(4)

whereby $x_{j,0}^{(i)}$ is one point on the intersection between hyperplane H_j and surface element S_i^p

$$x_{j,0}^{(i)} \in \{x \in \mathbb{R}^{3} | a_{j}^{(i)T} x = b_{j}^{(i)}, \\ a_{k}^{(i)T} y \leq b_{k}^{(i)}, \\ k=1, \cdots, j-1, j+1, \cdots, p-1, p+1, \cdots, M_{i} \},$$

$$a_{p}^{(i)T} y = b_{p}^{(i)}, \\ \|x-y\|^{2} = 0 \}$$
(5)

Note that x_0 does only exist, when there is a common border between S_i^p and H_j . If there is no border, then $\hat{a}_j^{(i)}$ and $\hat{b}_j^{(i)}$ do not exist, i.e. they are not halfspace intersections of the box.

References

[Boyd and Vandenberghe(2004)] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.