
Motion Planning Lecture 12

Optimization Wrap-Up and Method Comparison

Wolfgang Hönig (TU Berlin) and Andreas Orthey (Realtime Robotics)

July 10, 2024

Recap: Optimization-Based Methods

� Gradients to find local minima efficiently (e.g., CHOMP)

� Convex Programming: global minimum, some variants (QP, LP) can be solved in

polynomial time

� Splines for geometric motion planning

� Differential Flatness: Find optimal solutions to kinodynamic motion planning with

geometric reasoning efficiently

� Sequential Convex Programming (SCP): Use the benefits of convex programming

for non-convex problems by convexifying constraints and/or objective

1

More Optimization

Kth Order Markov Optimization (KOMO) [1] (1)

� Assumption: Cost/constraints depend only on the last k configurations

� Use configurations as decision variables, only

� Implicit Euler integration to includes derivatives like velocity or accelerations

� Define a nonlinear program (NLP) to solve

kth order assumption makes matrices sparse and nonlinear optimization efficient

2

Kth Order Markov Optimization (KOMO) [1] (2)

KOMO

Discretize configuration/state:

x0, . . . , xT

minimize
T∑
t=0

ft(xt−k:t)

subject to gt(xt−k:t) ≤ 0

ht(xt−k:t) = 0

with xt−k:t = (xt−k , . . . , xt) being

tuples of k +1 consecutive states.

2D Single Integrator

State: xt = (xt , yt)

Velocity can be approximated as (xt−xt−1

∆t , yt−yt−1

∆t)

(i.e., k = 1)

minimize
T∑
t=0

∥xt − xt−1∥22

s.t.∥(xt − xt−1)/∆t∥2 − vmax ≤ 0 ∀t
x0 = xstart

xT = xgoal

How to encode collision constraints?

3

Kth Order Markov Optimization (KOMO) [1] (3)

K-th order markov optimization (KOMO)

This can be solved using the Lagrangian method

minimize
T∑
t=0

ft(xt−k:t) + ν

T∑
t=0

gt(xt−k:t) + µ

T∑
t=0

ht(xt−k:t)

This is usually done iteratively. First, find a solution with low ν,µ, then use found

solution and optimize with larger ν,µ.

4

Kth Order Markov Optimization (KOMO) [1] (4)

Objectives

Objectives ft usually include quadratic terms (because they are easier to handle during

optimization) like

� Position constraints f(xt) = (xt − qt)T (xt − qt)

� Minimize velocity: f(xt−1:t) = ∥xt − xt−1∥2.
� Minimize accelerations: f(xt−2:t) = ∥xt + xt−2 − 2xt−1∥2.

Code base / library: RAI https://github.com/MarcToussaint/rai

5

https://github.com/MarcToussaint/rai

Stochastic Trajectory Optimization for Motion Planning (STOMP) [2]

Key Idea

Gradients may be noisy or discontinous. Use numerical method to approximate gradient

first, then apply gradient descent.

1. Create K trajectories by adding Gaussian noise to an initial guess

Left: Visualization of co-

variance matrix for noise

Right: 20 random trajec-

tory disturbances

2. For each trajectory and timestep compute the cost and then probability (softmax)

3. Gradient descent step: move towards the expectation of the noise value

6

Monte Carlo Tree Search (MCTS) (1) [3]

7

Monte Carlo Tree Search (MCTS) (2) [3]

� Use reward function to guide search (high reward if at goal)

� Each node represents a state, a path from the root to a leaf a trajectory

� Can plan under uncertainty (dynamics, observations, environment) with unknown

distributions

� Extensions for continuous action spaces

� High computational effort

8

Taxonomy Optimization-based Approaches (1)

By Decision Variables

� Discretized configuration sequence qk
� KOMO [1]

� TrajOpt (SCP variant) [4]

� CHOMP [5]

� STOMP [2]

� Discretized action and configuration sequences uk and qk
� GuSTO [6], SCvx [7] (SCP variants)

� MCTS [3]

� Other parameters

� Spline optimization (polynomial parameters or Bézier control points)

9

Taxonomy Optimization-based Approaches (2)

By Solver Type

� Convex optimization

� TrajOpt [4], GuSTO [6], SCvx [7] (SCP variants)

� Spline optimization (polynomial parameters or Bézier control points)

� Non-convex, gradient-based optimization

� CHOMP [5]

� KOMO [1]

� Gradient-free / Blackbox

� STOMP [2]

� MCTS [3]

10

What is the “best” optimization-based motion planner? (1)

Geometric Motion Planning

Splines (if applicable) or KOMO

Why?

Spline optimization is a QP (global solution, very fast computation), but not all con-

straints can be encoded.

KOMO is fast in practice, relatively easy to tune, and can encode arbitrary costs/con-

straints

11

What is the “best” optimization-based motion planner? (2)

Kinodynamic Motion Planning

Splines (if applicable), SCP, or control-based methods (not covered here)

Why?

Spline optimization is a QP (global solution, very fast computation), but not all con-

straints can be encoded.

SCP can encode all constraints (with linearization) nicely, but is slow in practice (see [8])

12

Comparing Search-, Sampling-, and

Optimization-based Approaches

Recap

Foundations

2 Weeks (problem formulation, terminology, collision checking)

Search-based

2 Weeks (A* and variants;

state-lattice-based plan-

ning)

Sampling-based

5 Weeks (RRT, PRM,

OMPL, Sampling Theory)

Optimization-based

2.5 Weeks (SCP, KOMO)

Current and Advanced Topics

2.5 Weeks (Comparative Analysis, Machine Learning and Motion Planning, Hybrid- and

Multi-Robot approaches)

13

Algorithms and Software Packages

Search-based

A∗

wA∗, A∗
ϵ

State Lattices + X

SBPL

Sampling-based

PRM, LazyPRM

EST, RRT, RRT-Connect

RRT*, PRM*, FMT*, In-

formed RRT*

kinodynamic RRT, SST,

AO-RRT

OMPL

Optimization-based

CHOMP, STOMP

KOMO

SCP (TrajOpt, GuSTO,

SCvx)

Splines

cvxpy, SCPToolbox.jl, RAI

Which algorithms directly support kinodynamic motion planning?

14

Properties (1)

What are the strongest properties for each category?

Search Sampling Optimization

Completeness resolution-complete

(A*)

probabilisticallyprobabilistically com-

plete (RRT*)

Yes (CP)Yes (CP), No (SCP,

KOMO)

Optimality optimal w.r.t. resolu-

tion (A*)

asymptoticallyasymptotically opti-

mal (RRT*)

Yes (CP)Yes (CP), Locally

(SCP, KOMO, ...)

Complexity /

Convergence

polynomialpolynomial time to

find optimal solution

(A*)

exponentialexponential con-

vergence for any

solution; sublinear

to optimal solution

(PRM*)

polynomialpolynomial time to

find optimal solution

(LP, some QP)

probabilistically Yes (CP)

asymptotically Yes (CP)

polynomial
exponential polynomial

15

Properties (2)

What are the strongest properties for each category?

Search Sampling Optimization

Scalability

with

state/action

dimension

exponentialexponential exponentialexponential polynomialpolynomial

Scalability

with dura-

tion/path

length

almost linearlinear (de-

pends on h)

roughly linearlinear polynomialpolynomial

exponential exponential polynomial

linear
linear polynomial

16

What is the “best” approach? (1)

Geometric Motion Planning

1. If space can be easily discretized ⇒ A*, potentially followed by

optimization-based smoothing

2. else ⇒ RRT-Connect, followed by optimization-based smoothing (KOMO,

Splines)

Why?

A* has the strongest theoretical guarantees (optimality, convergence), great runtime

and memory usage, and is easy to tune (many variants; choice of heuristic function).

RRT can handle implicitly defined environments, but requires the workspace to be

bounded for sampling.

17

What is the “best” approach? (2)

Kinodynamic Motion Planning

1. If (almost) free space ⇒ optimization (Splines, KOMO, SCP)

2. Else if T is “small” ⇒ optimization (KOMO or SCP)

3. Else if d is “low” ⇒ sampling (SST*, AO-RRT), followed by optimization-based

smoothing

4. Else (obstacles, T is “high” and d is high) ⇒ hierarchical/hybrid

Why?

Optimization has low runtime, good scalability with d , and produces nice results. How-

ever it does not work well for maze-like environments or large T .

18

What is the “best” approach? (3)

Practical Consideration

OMPL is by far the simplest to use/prototype, so start with that as baseline in any

case.

No “best” approach!

Results can vary widely, depending on robot type, scenario, and objectives.

Testing (and benchmarking) is still needed for all applications.

Ideas here are biased and based on experience, not statistically validated science.

19

Hybrid Approaches

Search + Sampling

PRM*
� Sampling to construct a graph

� Search (A*) to find lowest-cost solution

Informed RRT*, BIT*

� Sampling to construct a tree

� Use search-inspired heuristic to focus sampler

20

Search + Sampling: Dominance-Informed Region Tree (DIRT) [9]

Dominance-Informed Region

� A ball around each node in the tree (which represents q)

� Locally low f = g + h value ⇒ larger radius

� Radii are updated as the tree grows

� Balls represent volume of “influence”

� Similar to RRT

� Rather than selecting qnear via Voronoi

bias, randomly pick one configuration

whose Dominance-Informed Region

covers qrand
21

Search + Sampling: Dominance-Informed Region Tree (DIRT) [9]

Informed RRT* [10] Insight

After a solution is found (and thus a cost bound is known), refinement should focus on

the “relevant region”.

What are similarities and differences between DIRT and Informed RRT*?
Both use a heuristic function

Informed RRT* changes the asymptotic behavior; DIRT the search itself
22

Video

https://doi.org/10.1109/IROS.2018.8593672

23

https://doi.org/10.1109/IROS.2018.8593672

Search + Optimization

State-Lattice A*
� Optimization to generate motion primitives

� Search to find solution in implicitly defined graph

A* followed by Smoothing

� Search to generate waypoints

� Optimization to find smooth trajectory

24

Search + Optimization: Interleaving Search and Trajectory Optimization (IN-

SAT) [11]

Key Idea

� Hierarchical Planning

� Use search (wA*) to plan in low dimensions (6D:

position and orientation)

� Use optimization (polynomial spline QP) to refine

cost-to-come and cost-to-go in 12D (warm-started

with low-dim solution)

25

Search + Optimization: Interleaving Search and Trajectory Optimization (IN-

SAT) [11]

� Shown
� low-level search graph: nodes = circles; black arrows = edges

� Smooth trajectories (cost-to-come): blue edges

� Step 1: Expand node in OPEN; here: expand sL, which has successor nL (low 6D

space) 26

Search + Optimization: Interleaving Search and Trajectory Optimization (IN-

SAT) [11]

� Step 2: Attempt to optimize trajectory from start to goal via intermediate state

nL (red line)

� If successful ⇒ Step 5

� Else ⇒ Repair (Step 3)
27

Search + Optimization: Interleaving Search and Trajectory Optimization (IN-

SAT) [11]

� Step 3: Attempt to optimize trajectory from intermediate states between start

and sL towards the goal via intermediate state nL (red line)

� Iterative process, starting from successor of start state

28

Search + Optimization: Interleaving Search and Trajectory Optimization (IN-

SAT) [11]

� Step 5: Re-optimize without intermediate constraints

29

Video

https://doi.org/10.1109/LRA.2021.3067298

30

https://doi.org/10.1109/LRA.2021.3067298

Sampling + Optimization

RRT(*) followed by Smoothing

� Sampling to find initial solution (homotopy class)

� Optimization to find optimal trajectory within that homotopy class

STOMP
� Sampling to estimate gradient robustly

� Gradient descent to optimize

31

Sampling + Optimization: RABIT*

RRT*-RBO [12]

� Add edges by solving small

optimization problems

� Sampler: RRT*

� Optimizer: BSplines

Enables to use RRT* for kinodynamic

planning.

RABIT* [13]

� Add edges by solving small

optimization problems

� Sampler: BIT*

� Optimizer: CHOMP

Better convergence than BIT* for geomet-

ric problems.

32

Search + Sampling + Optimization

DIRT/Informed RRT* followed by Smoothing

� Search + Sampling to find initial solution (homotopy class)

� Optimization to find optimal trajectory within that homotopy class

STOMP initialized by A*

� A* to find initial waypoints

� Sampling to estimate gradient robustly

� Gradient descent to optimize

RABIT*

Since BIT* borrows some ideas from search.

33

Search + Sampling + Optimization: db-A* [14]

Key Idea

Allow “jumps” in the solution and iteratively reduce their magnitude.

Example: Unicycle that can only turn left

A) δ = 0.41 T∆t = 13.3s B) δ = 0.22 T∆t = 16.3s C) δ = 0.00 T∆t = 19.5s
34

Search + Sampling + Optimization: db-A* [14]

db-A*: Combination of A* and kd-Trees, to compute solutions with bounded

discontinuities δ 35

Video

https://youtu.be/dLNheLa5wAc

36

https://youtu.be/dLNheLa5wAc

Conclusion

� KOMO as efficient nonlinear motion planning formulation

� Search-, Sampling-, Optimization-based approaches have different strength and

weaknesses

� A* and RRT* are good initial choices for the geometric case; Splines, SCP, and

SST*/AO-RRT good initial choices for the kinodynamic case

� Hybrid solutions can combine advantages of search-, sampling-, and

optimization-based approaches

Next Time
� Advanced Topics: Multi-Robot Motion Planning

37

Suggested Reading

1. John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal,

Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel.

“Motion Planning with Sequential Convex Optimization and Convex

Collision Checking”. In: The International Journal of Robotics Research 33.9 (Aug. 1,

2014), pp. 1251–1270. issn: 0278-3649. doi: 10.1177/0278364914528132, Section 4.1

2. References in the slides

38

https://doi.org/10.1177/0278364914528132

References i

[1] Marc Toussaint. “A Tutorial on Newton Methods for Constrained

Trajectory Optimization and Relations to SLAM, Gaussian Process

Smoothing, Optimal Control, and Probabilistic Inference”. In: Geometric and

Numerical Foundations of Movements. Ed. by Jean-Paul Laumond, Nicolas Mansard,

and Jean-Bernard Lasserre. Vol. 117. Cham: Springer International Publishing, 2017,

pp. 361–392. isbn: 978-3-319-51546-5 978-3-319-51547-2. url:

http://link.springer.com/10.1007/978-3-319-51547-2_15 (visited on

08/16/2021).

http://link.springer.com/10.1007/978-3-319-51547-2_15

References ii

[2] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and

Stefan Schaal. “STOMP: Stochastic Trajectory Optimization for Motion

Planning”. In: IEEE International Conference on Robotics and Automation (ICRA).

IEEE, 2011, pp. 4569–4574. doi: 10.1109/ICRA.2011.5980280.

[3] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,

Spyridon Samothrakis, and Simon Colton. “A Survey of Monte Carlo Tree

Search Methods”. In: IEEE Transactions on Computational Intelligence and AI in

Games 4.1 (Mar. 2012), pp. 1–43. issn: 1943-0698. doi:

10.1109/TCIAIG.2012.2186810.

https://doi.org/10.1109/ICRA.2011.5980280
https://doi.org/10.1109/TCIAIG.2012.2186810

References iii

[4] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal,

Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel.

“Motion Planning with Sequential Convex Optimization and Convex

Collision Checking”. In: The International Journal of Robotics Research 33.9

(Aug. 1, 2014), pp. 1251–1270. issn: 0278-3649. doi: 10.1177/0278364914528132.

[5] Matthew Zucker, Nathan D. Ratliff, Anca D. Dragan, Mihail Pivtoraiko,

Matthew Klingensmith, Christopher M. Dellin, J. Andrew Bagnell, and

Siddhartha S. Srinivasa. “CHOMP: Covariant Hamiltonian Optimization for

Motion Planning”. In: I. J. Robotics Res. 32.9-10 (2013), pp. 1164–1193. doi:

10.1177/0278364913488805.

https://doi.org/10.1177/0278364914528132
https://doi.org/10.1177/0278364913488805

References iv

[6] Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, and Marco Pavone.

“GuSTO: Guaranteed Sequential Trajectory Optimization via Sequential

Convex Programming”. In: 2019 International Conference on Robotics and

Automation (ICRA). 2019 International Conference on Robotics and Automation

(ICRA). May 2019, pp. 6741–6747. doi: 10.1109/ICRA.2019.8794205.

[7] Danylo Malyuta, Taylor P. Reynolds, Michael Szmuk, Thomas Lew,

Riccardo Bonalli, Marco Pavone, and Behçet Açıkmeşe. “Convex Optimization

for Trajectory Generation: A Tutorial on Generating Dynamically Feasible

Trajectories Reliably and Efficiently”. In: IEEE Control Systems Magazine 42.5

(2022), pp. 40–113. doi: 10.1109/MCS.2022.3187542.

https://doi.org/10.1109/ICRA.2019.8794205
https://doi.org/10.1109/MCS.2022.3187542

References v

[8] Welf Rehberg, Joaquim Ortiz de Haro, Marc Toussaint, and Wolfgang Hönig.

“Comparison of Optimization-Based Methods for Energy-Optimal

Quadrotor Motion Planning”. In: CoRR abs/2304.14062 (2023). doi:

10.48550/arXiv.2304.14062. arXiv: 2304.14062.

[9] Zakary Littlefield and Kostas E. Bekris. “Efficient and Asymptotically

Optimal Kinodynamic Motion Planning via Dominance-Informed

Regions”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). 2018, pp. 1–9. doi: 10.1109/IROS.2018.8593672.

https://doi.org/10.48550/arXiv.2304.14062
https://arxiv.org/abs/2304.14062
https://doi.org/10.1109/IROS.2018.8593672

References vi

[10] Jonathan D. Gammell, Timothy D. Barfoot, and Siddhartha S. Srinivasa.

“Informed Sampling for Asymptotically Optimal Path Planning”. In: IEEE

Transactions on Robotics 34.4 (Aug. 2018), pp. 966–984. issn: 1941-0468. doi:

10.1109/TRO.2018.2830331.

[11] Ramkumar Natarajan, Howie Choset, and Maxim Likhachev. “Interleaving

Graph Search and Trajectory Optimization for Aggressive Quadrotor

Flight”. In: IEEE Robotics and Automation Letters 6.3 (July 2021), pp. 5357–5364.

issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.2021.3067298. arXiv: 2101.12548.

https://doi.org/10.1109/TRO.2018.2830331
https://doi.org/10.1109/LRA.2021.3067298
https://arxiv.org/abs/2101.12548

References vii

[12] Samantha Stoneman and Roberto Lampariello. “Embedding Nonlinear

Optimization in RRT for Optimal Kinodynamic Planning”. In: 53rd IEEE

Conference on Decision and Control. 53rd IEEE Conference on Decision and Control.

Dec. 2014, pp. 3737–3744. doi: 10.1109/CDC.2014.7039971.

[13] Sanjiban Choudhury, Jonathan D. Gammell, Timothy D. Barfoot,

Siddhartha S. Srinivasa, and Sebastian Scherer. “Regionally Accelerated

Batch Informed Trees (RABIT*): A Framework to Integrate Local

Information into Optimal Path Planning”. In: IEEE International Conference on

Robotics and Automation (ICRA). 2016, pp. 4207–4214. doi:

10.1109/ICRA.2016.7487615.

https://doi.org/10.1109/CDC.2014.7039971
https://doi.org/10.1109/ICRA.2016.7487615

References viii

[14] Wolfgang Hönig, Joaquim Ortiz de Haro, and Marc Toussaint. “db-A*:

Discontinuity-bounded Search for Kinodynamic Mobile Robot Motion

Planning”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,

IROS 2022, Kyoto, Japan, October 23-27, 2022. IEEE, 2022, pp. 13540–13547. doi:

10.1109/IROS47612.2022.9981577.

https://doi.org/10.1109/IROS47612.2022.9981577

	More Optimization
	Comparing Search-, Sampling-, and Optimization-based Approaches
	Hybrid Approaches
	Appendix

