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Recap Last Week

Last Week

• Completeness and Convergence of RRT

• Proof of asymptotic optimality

• Advanced sampling-based planners (LazyPRM, FMT*)

Today

• Introduction to Convex optimization

• Optimization-based motion planning

• Splines, Signed-Distance Field, Gradients
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Optimization-based Motion Planning
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Optimization using Shortcutting



Geometric Path Improvement

Shortcutting

• Vanilla version

• Sample two waypoints

• Try to connect them and update path

• Repeat until timeout or convergence

• Easy to implement

• Does not take complex cost functions into account

• Too few waypoints:

• Too many waypoints:
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Geometric Path Improvement

Shortcutting

• Vanilla version

• Sample two waypoints

• Try to connect them and update path

• Repeat until timeout or convergence

• Easy to implement

• Does not take complex cost functions into account

• Too few waypoints: Hard to connect

• Too many waypoints: Long computational time
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Shortcutting
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Geometric Path Improvement

Shortcutting

• Question: Can you do shortcutting with an arbitrary cost function ?

• Question: Can you do shortcutting on e.g. a sphere ?

• Question: Can you do shortcutting on kinodynamic systems ?
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Optimization using Splines



Splines

spline (n.)—long, thin piece of wood [Online Etymology Dictionary]
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Splines

Mathematically: A piecewise polynomial function.
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Splines

Mathematically: A piecewise polynomial function.

Why do we want that?
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Splines

Mathematically: A piecewise polynomial function.

Why do we want that? Smoothness, Differentiability, Comfort (car)
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Splines

Smoothness

A path which is at least n-times differentiable (differentiability classes C 0,C 1, ...,C∞).
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Splines

Smoothness

A path which is at least n-times differentiable (differentiability classes C 0,C 1, ...,C∞).

Discontinuous function
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Splines

Smoothness

A path which is at least n-times differentiable (differentiability classes C 0,C 1, ...,C∞).

C 0 function
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Splines

Smoothness

A path which is at least n-times differentiable (differentiability classes C 0,C 1, ...,C∞).

C 1 function
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Splines
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Splines

• Basis splines (B-Splines)

• Polynomial splines

• Geometric planning with polynomial splines

• Bézier curves

• Safe planning with Bézier curves
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Optimization using Splines

B-Splines
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B-Splines

Basis Splines (BSplines)

• A path is represented by M control points pm and corresponding basis functions

p(t) =
M∑

m=1

Bm(t)pm, s.t.
M∑

m=1

Bm(t) = 1 for all t

• Interpretation basis function: Influence of control point pm at point t.
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B-Splines

Blending of basis functions

p(t) =
M∑

m=1

Bm(t)pm

s.t.
M∑

m=1

Bm(t) = 1
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B-Splines

Knot vector

Let p : [0, 1] → X be a path.

• Idea: Take the input space [0, 1] and cover it with M subintervals

[ti , ti+1], i = 0, . . . ,M, and with ti < ti+1.

• Step 2: For each ti define a basis function centered at ti .

• ti is called the i-th knot, and t = (t0, . . . , tM) the knot vector (M + 1 elements).
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B-Splines

Linear B-Splines

bi (t) =


t − ti−1

ti − ti−1
, if ti+1 < t ≤ ti

−t + ti+1

ti+1 − ti
, if ti < t ≤ ti+1

0 , otherwise.

35



B-Splines

Linear B-Splines
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B-Splines

Linear B-Splines

37



B-Splines

Hermit B-Splines

bi (t) =



3x2 − 2x3 , if ti−2 < t ≤ ti ,

x =
t − ti−2

ti − ti−2

3x2 − 2x3 , if ti < t ≤ ti+2,

x = 1− t − ti
ti+2 − ti

0 , otherwise.
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B-Splines

Hermit B-Splines
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B-Splines

Hermit B-Splines

p
2

p
1

p
3
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B-Splines

Cox-de Bour Recurrence

Recursive basis function (allows you to tune dimensionality and smoothness).

Choose an integer k . Then

bi ,1(t) =

1 , if ti ≤ t < ti+1

0 , otherwise.

bi ,k(t) =
t − ti

ti+k − ti
bi ,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
bi+1,k−1(t)
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B-Splines

Cox-de Bour Recurrence
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Optimization using Splines

Polynomial Splines
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Polynomial Splines

Polynomial

p(t) = a0 + a1t + a2t
2 + . . .+ ant

n =
n∑

k=0

akt
k

• Cubic polynomial: p(t) = a0 + a1t + a2t
2 + a3t

3

What are the values at t = 0 and t = 1?

p(0) = a0 p(1) = a0 + a1 + a2 + a3

What are the derivatives with respect to t at t = 0 and t = 1?

p′(t) = a1 + 2a2t + 3a3t
2 p′(0) = a1 p′(1) = a1 + 2a2 + 3a3

p′′(t) = 2a2 + 6a3t p′′(0) = 2a2 p′′(1) = 2a2 + 6a3

p′′′(t) = 6a3 p′′′(0) = 6a3 p′′′(1) = 6a3
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Polynomial Splines

Assume we represent the trajectory using polynomial splines.

What is the acceleration cost?

J =

∫ 1

t=0
p′′(t)dt

=

∫ 1

t=0
2a2 + 6a3

= 2a2t + 3a3t
2
∣∣1
t=0

= 2a2 + 3a3
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Polynomial Splines

Let’s try to connect 3 numbers x1, x2, x3 ∈ R using 2 cubic polynomials (with

coefficients a and b):

argmin
a0,a1,a2,a3,b0,b1,b2,b3

Ja + Jb s.t.

pa(0) = x1

pa(1) = x2

pb(0) = x2

pb(1) = x3

p′a(1) = p′b(0)

p′′a (1) = p′′b(0)

argmin
a0,a1,a2,a3,b0,b1,b2,b3

2a2 + 3a3 + 2b2 + 3b3 s.t.

a0 = x1

a0 + a1 + a2 + a3 = x2

b0 = x2

b0 + b1 + b2 + b3 = x3

a1 + 2a2 + 3a3 = b0

2a2 + 6a3 = 2b2
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Polynomial Splines

What kind of optimization problem is that?

So far LP. (For higher-orders it can become a QP).

How can we handle the 2D or 3D case?

Optimization can be done for each dimension independently.
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Polynomial Splines: Challenges

Poor Numerical Stability

When using high order (≥ 8) and/or many (≥ 50) pieces, it is difficult to solve in

practice.

One solution: formulate as unconstrained QP where decision variables are endpoint

derivatives of segments [1].

Handling of Obstacles

• Add additional

waypoints

48
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Optimization using Splines

Bézier Curves
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Bézier Curves

Bézier Curve

A Bézier curve p : [0, 1] → Rd of degree n is defined by n+1 control points p0, . . . ,pn ∈
Rd as follows:

p(t) =
n∑

i=0

bi ,n(t)pi

bi ,n(t) =

(
n

i

)
t i (1− t)n−i .

Cubic Bézier Curve

p(t) = (1− t)3p0 + 3t(1− t)2p1

+ 3t2(1− t)p2 + t3p3
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Bézier Curves Properties (1)

• Endpoint interpolation: The curve connects p0 and pn, i.e., p(0) = p0 and

p(1) = pn

• Cn smoothness

Derivative of Bézier Curve

p′(t) = n
n−1∑
i=0

bi ,n−1(t)(pi+1 − pi ).

• Convex hull property: The curve lies inside the convex hull of their control points,

i.e., p(t) ∈ ConvexHull{p0, . . . ,pn} ∀t ∈ [0, 1] [2]
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Convex Hull Property

Separating

hyperplane

Safe

polytope

Control

point

Bézier

curve

Why is the convex hull property useful?

If pi are decision variables, we can constrain them to be in Qfree . Then, the curve is

guaranteed to be collision-free.
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Planning in Safe Polyhedra

robot path (green), obstacles (blue and red)
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Planning in Safe Polyhedra

time=1
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Planning in Safe Polyhedra

time=1
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Planning in Safe Polyhedra

time=2
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Planning in Safe Polyhedra

time=3
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Planning in Safe Polyhedra

time=4
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Planning in Safe Polyhedra

robot path (green), obstacles (blue and red)
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Planning in Safe Polyhedra (3D Example)
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Summary Splines

• Optimization for smoothness and energy

• Base splines

• Polynomial splines and convex optimization

• Bézier curves for safe planning
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Gradient-based optimization on

differentiable costs



Gradients

• Idea: Improve path by deforming it into the direction of a lower cost

• Functional gradients as generalization of directions for paths
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Gradients

Cost functionals

Given a path p : [0, 1] → X , define cost functionals like

• Obstacle cost Uobs [p]

• Smoothness cost Usmooth[p]

• Path length cost Ulength[p]

• Then compute gradients ∇U[p] and do gradient descent

p′ = p − λ∇U[p]
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Gradients
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Gradients
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Gradients
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Gradients
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Gradients

62



Gradients
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Gradients
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Gradient-based optimization on

differentiable costs

Computing Obstacle Cost Gradients
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Gradients

Obstacle cost

• Definition of obstacle cost as clearance from environment

• Obstacle cost

Uobs [p] =

1∫
0

∫
x∈B

cx(p(s))dx ds

• with x being a prespecified point on the robot body B, cx being the minimum

clearance to the environment and s being the index of the path
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Robot point distances
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Clearance definition

Obstacle cost

Uobs [p] =

1∫
0

∫
x∈B

cx(p(s))dx ds

Robot clearance

cx(q) =

1
ϵ (dx(q)− ϵ)2, if dx(q) < ϵ

0, otherwise.

whereby dx(q) is the distance of point x on robot at configuration q to the nearest

point in the environment.
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Obstacle gradients

Requirements

1. Efficient computation of distances (Signed distance fields)

2. Efficient obstacle cost gradient
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Gradient-based optimization on

differentiable costs

Signed Distance Fields
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Obstacle gradients

Problem

Computing distance of a point to the environment is not trivial

• For each point, you need to compute the clearance

• In the worst case, you would need to run GJK once for all obstacles and all points
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Signed Distance Field

Assumption: All obstacles are static

Then we can precompute a signed distance field (SDF), which assigns for each point

in space its clearance value
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Signed Distance Field

Can be computed efficiently in 2-d or 3-d.
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Signed Distance Field

Signed distance field

• Voxelize environment

• For each voxel, compute nearest obstacle distance

• Store this information, and use it as a look-up-table to compute clearances
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Signed Distance Field

Marching parabola algorithm

Marching parabola algorithm for euclidean distance fields [3] by Felzenszwalb and Hut-

tenlocher, 2012

• Let V be a 1-d grid, and P be occupied voxels on the grid

• Then we search for DP(v) = min
p∈P

d(v , p)

• Idea: Computer lower envelope parabolas for all occupied voxels

• For each point, check height of lower envelope, and store this value.
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Marching parabola algorithm

Step 1: Computer lower envelope parabolas

• k: number of

parabolas in lower

envelope

• p[i]: location of i-th

parabola in lower

envelope

• z[i], z[i+1]: range of

i-th parabola in

lower envelope

76



Marching parabola algorithm

Step 1: Computer lower envelope parabolas

• p[0] = 0, z [0] = −∞, z [1] = +∞, k = 0

• for p in P

1. s =IntersectionPoint(p, p[k])

2. If s ≤ z [k]

• k = k − 1

• Goto 1

3. Else

• k = k + 1

• p[k] = p

• z[k] = s

• z[k + 1] = +∞

77



Marching parabola algorithm

Step 2: Assign each point its height on the lower envelope

• k = 0

• for v in G

• while z [k + 1] < v

• k+1

• DP(v) = (v − p[k])2

• Return DP
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Marching parabola algorithm

• Multidimensional case can be reduced to 1-dimensional case

• Let (x , y) ∈ G be an element of a 2-d grid

DP(x , y) = min
x ′,y ′∈P

[(x − x ′)2 + (y − y ′)2]

= min
x ′

[(x − x ′)2 +min
y ′

(y − y ′)2]

= min
x ′

[(x − x ′)2 + DP(y)]

• Computational complexity O(dN), with d being the dimension and N being the

number of points

Publication: ”Distance transforms of sampled functions”, PF Felzenszwalb, DP Hut-

tenlocher, Theory of computing, 2012
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Gradient-based optimization on

differentiable costs

Obtacle cost gradient
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Gradient of obstacle cost

• Given Uobs [p], let us compute ∇Uobs [p].

• Three steps

• Compute gradient of clearance

• Consider gradient as virtual forces

• Map forces into configuration space
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Robot point distances
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Gradient of obstacle cost

Step 1: Compute gradient of clearance

• Clearance cx(q) will be improved by moving point x away from obstacle

• Let nE be the nearest point on the environment to x .

• Then
x − nE

∥x − nE∥
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Gradient of obstacle cost

Step 2: Consider gradient as virtual forces

• Pushing at each x along the direction of
x − nE

∥x − nE∥
would increase clearance!

• Let us define virtual forces at each x and map them into the configuration space
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Gradient of obstacle cost

Step 3: Map forces into configuration space

• A virtual force will move each point x by an infinitesimal small dx .

• This will create likewise an infinitesimal small dq in configuration space

• A dq is the direction in configuration space, which (locally) increases clearance.
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Gradient of obstacle cost

Step 3: Map forces into configuration space

• How to do it? By taking the derivative of the forward kinematics.

• Let x be a point in the workspace, q be the joint space values, and T the forward

kinematics.

x = T (q)

ẋ =
dT (q)

dq
q̇

= J · q̇

• Taking the inverse leads to q̇ = J−1(q)ẋ (transpose, pseudoinverse)
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Gradient of obstacle cost

Steepest Descent Step

• Functional gradient

∇U[p] =

1∫
0

∑
x∈R(p(s))

J−1(p(s))∇cxp(s)ds

• Gradient descent step in functional space:

p′ = p − λ∇U[p]
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Gradient of obstacle cost

Functional Gradient Descent

Let p be a path

While not converged

p' = p - lambda * dU[p]

Return p'
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Summary of obstacle cost gradient

• (1) Formulate cost from distances

• (2) Compute virtual displacements in direction of decreasing cost

• (3) Map virtual displacements into configuration space using jacobian

• (4) Take those displacements as directions for gradient step

• (5) Apply gradient descent using the directional steps in configuration space

89



CHOMP



CHOMP

Covariant Hamiltonian Optimization for Motion Planning (CHOMP)

• Initialize a path

• Discretize the path (waypoints)

• Use cost functional U[p] = Uobs [p] + λUsmooth[p]

• Apply derivative to waypoints

• Repeat or terminate if magnitude of gradient falls below threshold

M Zucker et al., ”Chomp: Covariant hamiltonian optimization for motion planning”, 2013 [4]
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CHOMP

Completeness and Optimality?
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Conclusion

Summary

• Optimization, gradient-free vs. gradient-based

• Shortcutting

• B-splines

• Polynomial splines (acceleration optimized)

• Bézier curves (obstacle-free)

• Computing obstacle costs (Signed distance field, obstacle gradients)

• Gradient descent and CHOMP
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