Motion Planning Lecture 6

Tree-based and Asymptotically-Optimal Planning

Wolfgang Hönig (TU Berlin) and Andreas Orthey (Realtime Robotics) May 29, 2024

Foundations

2 Weeks (problem formulation, terminology, collision checking)

Search-based	Sampling-based	Optimization-based
2 Weeks (A* and variants;	5 Weeks (RRT, PRM,	2 Weeks (SCP, TrajOpt)
state-lattice-based plan-	OMPL, Sampling Theory)	
ning)	,	

Current and Advanced Topics

3 Weeks (Comparative Analysis, Hybrid- and Multi-Robot approaches)

Today

- Tree-based motion planning (RRT)
- Introduction asymptotically optimal planning
- Optimal tree-based planning (RRT*, BIT*)

Tree-based motion planning

- Invented independently by Steve M. LaValle (1998) and David Hsu (1997)
- One of the most efficient algorithms for motion planning
- Growing a tree through random extensions

D Hsu, et al., "Path planning in expansive configuration spaces" (1999)

SM LaValle, "Rapidly-exploring random trees: A new tool for path planning", (1998) JJ Kuffner, SM LaValle, "RRT-connect: An efficient approach to single-query path planning", (2000)

Pseudocode RRT

```
def RRT(xstart, xgoal, mu):
1
         V.AddNode(xstart)
\mathbf{2}
         while not finished:
3
              xrand = SampleRandom()
 4
              xnear = NearestNeighbor(xrand)
5
              xnew = Steer(xnear, xrand, mu)
6
              if xnear == xnew:
7
                  continue
8
              V.AddNode(xnew)
9
              V.AddEdge(xnear, xnew)
10
              if Distance(xnew, xgoal) < Epsilon:</pre>
11
                  return Path(xnew)
12
```


Rapidly-exploring random tree (RRT)		
	X _{rand}	

Rapidly-exploring random tree

Rapidly-exploring random tree

Rapidly-exploring random tree

Efficiency

RRT is one of the most efficient planners because it has an implicit Voronoi bias

Rapidly-exploring random tree (RRT)

Voronoi region

Let q_1,\ldots,q_K be a set of configurations on the state space \mathcal{Q} . The Voronoi region is defined as

$$\mathsf{R}_k = \{q \in \mathcal{Q} \mid d(q, \mathsf{R}_k) \leq d(q, \mathsf{R}_j), ext{ for all } j
eq k \}$$

Rapidly-exploring random tree (RRT)

Voronoi bias

Probability of being selected is proportional to Voronoi region of a node in the tree. Exploration/Exploitation trade-off.

Improvements

- Extend tree towards goal
- Sample goal region (with probability μ)
- Bidirectional tree

Improvement A - Extend towards goal

Improvement A - Extend towards goal

Improvement B - Sample goal region

Improvement B - Sample goal region

Improvement B - Sample goal region

Bidirectional Rapidly-exploring random tree (Bi-RRT)

Bidirectional Rapidly-exploring random tree (Bi-RRT)

Further Improvements

- Path shortening after solution is found
- Multi-tree extension
- Targeted sampling

Introduction to Asymptotic Optimality Planning

What is optimality?

What is optimality?

Optimality (High-level)

The property of a planner to return a motion which surpasses all other motions in quality.

What is optimality?

Optimality (Mid-level)

From all possible paths, return the one which minimizes an objective function.

What is optimality?

Optimality (Low-level)

Given a motion planning problem Q, q_I, q_G , find a solution path p*, which minimizes an objective cost function c, i.e. $c(p*) \leq c(p)$ for all p which solve the problem.

Why do we need optimality?

Aesthetics

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Efficiency

Safety

Coverage

Usefulness of Optimality

- Aesthetics: Should look good from an observer perspective
- Efficiency: Should find time optimal paths
- Safety: Should keep distance to prevent collisions
- Coverage: Should reach every point of the workspace

Optimality principles also help us to search efficiently [1].

- A* heuristic: Prioritization search of best-cost paths VS. brute force search
- Pruning using necessary conditions

Introduction to Asymptotic Optimality Planning

Cost framework

Cost function types

Objective (or cost) function c. Graph G = (V, E) and paths $P = (e_1, \ldots, e_N)$.

- Cost for a configuration $c: V
 ightarrow \mathbb{R}_{\geq 0}$
- Cost of an edge $c: E
 ightarrow \mathbb{R}_{\geq 0}$
- Cost of a path $c: P \to \mathbb{R}_{\geq 0}$

Shortest length

- Configuration cost: Zero
- Edge cost: Length of segment, metric distance
- Path cost: Sum of edge costs

Maximum clearance

- Configuration cost: Distance from robot to environment
- Edge cost: Maximum over all configurations on edge
- Path cost: Maximum over all edges on path

Lowest energy

- Configuration cost: Zero
- $\bullet\,$ Edge cost: Energy spent going from A to B
- Path cost: Sum of edge energies

Additive costs

- Note: Most planners like RRT*, BIT* require additive cost!
- Additive cost: cost(A,B,C) = cost(A,B) + cost(B,C)

Number of objects manipulated by a robot manipulator

Bayraktar et al., "Solving Rearrangement Puzzles using Path Defragmentation in Factored State Spaces", Robotics and Automation Letters (RA-L), 2023

Cost framework recap

- What: Best possible motion
- Why: Aesthetics, Efficiency, Safety, Coverag, Optimality for efficient search
- How: Cost framework, additive costs

Optimal tree-based motion planning

What if we keep running RRT?

What if we keep running RRT?

What causes this?

What if we keep running RRT?

What causes this?

Edges are only added, never changed (rewired).

Sampling-based algorithms for optimal motion planning

 S Karaman, E Frazzoli - The international journal of robotics ..., 2011 - journals.sagepub.com

 During the last decade, sampling-based path planning algorithms, such as probabilistic

 roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well ...

 ☆ Save 切 Cite Cited by 3551

Sampling-based algorithms for optimal motion planning

 S Karaman, E Frazzoli - The international journal of robotics ..., 2011 - journals.sagepub.com

 During the last decade, sampling-based path planning algorithms, such as probabilistic

 roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well ...

 ☆ Save 切 Cite Cited by 3551 Related articles

[RRT is Suboptimal [2, Theorem 33]

The cost of the best solution returned by RRT converges to a suboptimal value, with probability one:

$$\mathbb{P}\left(\left\{\lim_{n\to\infty}Y_n^{RRT}>c^*\right\}\right)=1.$$

Algorithm 2 RRT* $(x_{init} := s, x_{goal} := t, n, r, \eta)$ 1: $V = \{x_{init}\}$ 2: for j = 1 to n do $x_{\text{rand}} \leftarrow \text{SAMPLE-FREE}()$ 3: 4: $x_{\text{near}} \leftarrow \text{NEAREST}(x_{\text{rand}}, V)$ 5: $x_{\text{new}} \leftarrow \text{STEER}(x_{\text{near}}, x_{\text{rand}}, \eta)$ 6: **if** COLLISION-FREE $(x_{\text{near}}, x_{\text{new}})$ **then** $X_{\text{near}} = \text{NEAR}(x_{\text{new}}, V, \min\{r(|V|), \eta\})$ 7: 8: $V = V \cup \{x_{\text{new}}\}$ 9: $x_{\min} = x_{\max}$ $c_{\min} = \text{COST}(x_{\text{near}}) + ||x_{\text{new}} - x_{\text{near}}||$ 10: for $x_{\text{near}} \in X_{\text{near}}$ do 11: 12: if COLLISION-FREE $(x_{\text{near}}, x_{\text{new}})$ then if $COST(x_{near}) + ||x_{new} - x_{near}|| < c_{min}$ then 13: 14: $x_{\min} = x_{\max}$ $c_{\min} = \text{COST}(x_{\text{near}}) + ||x_{\text{new}} - x_{\text{near}}||$ 15: $E = E \cup \{(x_{\min}, x_{new})\}$ 16: 17: for $x_{\text{near}} \in X_{\text{near}}$ do 18: **if** COLLISION-FREE (x_{new}, x_{near}) **then** if $COST(x_{new}) + ||x_{near} - x_{new}|| < COST(x_{near})$ then 19: 20: $x_{\text{parent}} = \text{PARENT}(x_{\text{near}})$ $E = E \cup \{(x_{\text{new}}, x_{\text{near}})\} \setminus \{(x_{\text{parent}}, x_{\text{near}})\}$ 21: 22: return G = (V, E)

• Pseudo code from [3]

22: return G = (V, E)

Algorithm 2 RRT* $(x_{init} := s, x_{goal} := t, n, r, \eta)$ 1: $V = \{x_{init}\}$ 2: for j = 1 to *n* do $x_{\text{rand}} \leftarrow \text{SAMPLE-FREE}()$ 3: 4: $x_{\text{near}} \leftarrow \text{NEAREST}(x_{\text{rand}}, V)$ 5: $x_{\text{new}} \leftarrow \text{STEER}(x_{\text{near}}, x_{\text{rand}}, n)$ **if** COLLISION-FREE $(x_{\text{near}}, x_{\text{new}})$ **then** 6: 7: $X_{\text{near}} = \text{NEAR}(x_{\text{new}}, V, \min\{r(|V|), \eta\})$ 8: $V = V \cup \{x_{\text{new}}\}$ 9: $x_{\min} = x_{\max}$ $c_{\min} = \text{COST}(x_{\text{near}}) + ||x_{\text{new}} - x_{\text{near}}||$ 10: for $x_{\text{near}} \in X_{\text{near}}$ do 11: 12: if COLLISION-FREE $(x_{\text{near}}, x_{\text{new}})$ then 13: if $COST(x_{near}) + ||x_{new} - x_{near}|| < c_{min}$ then 14: $x_{\min} = x_{\max}$ $c_{\min} = \text{COST}(x_{\text{near}}) + ||x_{\text{new}} - x_{\text{near}}||$ 15: $E = E \cup \{(x_{\min}, x_{new})\}$ 16: 17: for $x_{\text{near}} \in X_{\text{near}}$ do 18: **if** COLLISION-FREE (x_{new}, x_{near}) **then** 19: if $COST(x_{new}) + ||x_{near} - x_{new}|| < COST(x_{near})$ then 20: $x_{\text{parent}} = \text{PARENT}(x_{\text{near}})$ $E = E \cup \{(x_{\text{new}}, x_{\text{near}})\} \setminus \{(x_{\text{narent}}, x_{\text{near}})\}$ 21:

- Pseudo code from [3]
- Parent of **q**_{new}: May use other parent than **q**_{near} with lowest cost (within neighborhood of **q**_{new})

Algorithm 2 RRT* $(x_{init} := s, x_{goal} := t, n, r, \eta)$ 1: $V = \{x_{init}\}$ 2: for j = 1 to *n* do $x_{\text{rand}} \leftarrow \text{SAMPLE-FREE}()$ 3: $x_{\text{near}} \leftarrow \text{NEAREST}(x_{\text{rand}}, V)$ 4: 5: $x_{\text{new}} \leftarrow \text{STEER}(x_{\text{near}}, x_{\text{rand}}, n)$ 6: **if** COLLISION-FREE $(x_{\text{near}}, x_{\text{new}})$ **then** 7: $X_{\text{near}} = \text{NEAR}(x_{\text{new}}, V, \min\{r(|V|), \eta\})$ 8: $V = V \cup \{x_{\text{new}}\}$ 9: $x_{\min} = x_{\max}$ $c_{\min} = \text{COST}(x_{\text{near}}) + ||x_{\text{new}} - x_{\text{near}}||$ 10: for $x_{\text{near}} \in X_{\text{near}}$ do 11: 12: if COLLISION-FREE $(x_{\text{near}}, x_{\text{new}})$ then 13: if $COST(x_{near}) + ||x_{new} - x_{near}|| < c_{min}$ then 14: $x_{\min} = x_{\max}$ $c_{\min} = \text{COST}(x_{\text{near}}) + ||x_{\text{new}} - x_{\text{near}}||$ 15: $E = E \cup \{(x_{\min}, x_{new})\}$ 16: 17: for $x_{\text{near}} \in X_{\text{near}}$ do

18: **if** COLLISION-FREE (x_{new}, x_{near}) **then**

22: return G = (V, E)

19: **if** $\operatorname{COST}(x_{\operatorname{new}}) + ||x_{\operatorname{near}} - x_{\operatorname{new}}|| < \operatorname{COST}(x_{\operatorname{near}})$ **then**

20:
$$x_{\text{parent}} = \text{PARENT}(x_{\text{near}})$$

21: $E = E \cup \{(x_{\text{new}}, x_{\text{near}})\} \setminus \{(x_{\text{parent}}, x_{\text{near}})\}$

• Pseudo code from [3]

- Parent of **q**_{new}: May use other parent than **q**_{near} with lowest cost (within neighborhood of **q**_{new})
- Rewire edges: Use q_{new} as a new parent, for neighboring configurations, if it reduces costs

Algorithm 2 RRT* $(x_{init} := s, x_{goal} := t, n, r, \eta)$ 1: $V = \{x_{init}\}$ 2: for j = 1 to *n* do $x_{\text{rand}} \leftarrow \text{SAMPLE-FREE}()$ 3: $x_{\text{near}} \leftarrow \text{NEAREST}(x_{\text{rand}}, V)$ 4: 5: $x_{\text{new}} \leftarrow \text{STEER}(x_{\text{near}}, x_{\text{rand}}, \eta)$ 6: **if** COLLISION-FREE $(x_{\text{near}}, x_{\text{new}})$ **then** 7: $X_{\text{near}} = \text{NEAR}(x_{\text{new}}, V, \min\{r(|V|), \eta\})$ 8: $V = V \cup \{x_{new}\}$ 9: $x_{\min} = x_{\max}$ $c_{\min} = \text{COST}(x_{\text{near}}) + ||x_{\text{new}} - x_{\text{near}}||$ 10: for $x_{\text{near}} \in X_{\text{near}}$ do 11: 12: if COLLISION-FREE $(x_{\text{near}}, x_{\text{new}})$ then if $COST(x_{near}) + ||x_{new} - x_{near}|| < c_{min}$ then 13: 14: $x_{\min} = x_{\max}$ $c_{\min} = \text{COST}(x_{\text{near}}) + ||x_{\text{new}} - x_{\text{near}}||$ 15: $E = E \cup \{(x_{\min}, x_{\text{new}})\}$ 16: 17: for $x_{\text{near}} \in X_{\text{near}}$ do 18: if COLLISION-FREE (x_{new}, x_{near}) then if $COST(x_{new}) + ||x_{near} - x_{new}|| < COST(x_{near})$ then 19: 20: $x_{\text{parent}} = \text{PARENT}(x_{\text{near}})$ 21:

- $E = E \cup \{(x_{\text{new}}, x_{\text{near}})\} \setminus \{(x_{\text{parent}}, x_{\text{near}})\}$
- 22: return G = (V, E)

- Pseudo code from [3]
- Parent of **q**_{new}: May use other parent than \mathbf{q}_{pear} with lowest cost (within neighborhood of \mathbf{q}_{new})
- Rewire edges: Use **q**_{new} as a new parent, for neighboring configurations, if it reduces costs
- Neighborhood radius depends on tree size:

$$r(|\mathcal{V}|) = \gamma \left(\frac{\log |\mathcal{V}|}{|\mathcal{V}|}\right)^{\frac{1}{d+1}}$$

Rewiring

If we add a new configuration x, we execute two rewiring operations:

- Rewire x to best parent
- Rewire all children nodes

Pseudocode tree rewiring

```
def Rewire(x):
1
       N = Neighbours(x)
2
       for x n in N:
3
         Rewire(x_n, x)
4
       for x n in N:
5
         Rewire(x, x_n)
6
7
     def Rewire(x, y):
8
       p = Steer(x, y)
9
       if ConstraintFree(p):
10
         if cost(x)+cost(p) < cost(y):</pre>
11
           y.parent = x
12
```

Pseudocode RRT

```
def RRT(xstart, xgoal, mu):
1
         V.AddNode(xstart)
2
         while not finished:
3
             xrand = SampleRandom()
 4
             xnear = NearestNeighbor(xrand)
5
             xnew = Steer(xnear, xrand, mu)
6
             if xnear == xnew:
7
                 continue
8
             V.AddNode(xnew)
9
             V.AddEdge(xnear, xnew)
10
             Rewire(xnew) ##Rewiring operation to make it AD
11
             if Distance(xnew, xgoal) < Epsilon:</pre>
12
                 return Path(xnew)
13
```

RRT* Example (1)

Motion planning problem (orange = q_{start})

RRT* Example (2)

Intermediate tree and new sample \mathbf{q}_{rand} (purple \times)

RRT* Example (3)

Nearest \mathbf{q}_{near} in existing tree is found (here: \mathbf{q}_{start})

RRT* Example (4)

Steer computes \mathbf{q}_{new} on the line from \mathbf{q}_{start} to \mathbf{q}_{rand}

RRT* Example (5)

New edge is rejected (not collision-free)

RRT* Example (6)

So far behavior is exactly the same as RRT; Fast-forward we have a larger tree

RRT* Example (7)

New sample \mathbf{q}_{rand} and closest node in the tree \mathbf{q}_{near}

RRT* Example (8)

Resulting edge $(\mathbf{q}_{new}, \mathbf{q}_{near})$ is collision-free

RRT* Example (9)

This edge would be added in RRT

RRT* Example (10)

RRT*: Consider all configuration of the tree in the neighborhood of \mathbf{q}_{new}

RRT* Example (11)

RRT*: Use a lower-cost parent for \mathbf{q}_{new} (other than \mathbf{q}_{near})

RRT* Example (12)

RRT*: Rewire the neighbors to use \mathbf{q}_{new} as a parent to reduce the cost

RRT vs. RRT* (1)

RRT vs. RRT* (2)

RRT* is asymptotically optimal

The probability that the solution cost of RRT* is not more than $(1+\epsilon)c^*$ is 1, as the number of iterations go to infinity:

$$\lim_{n\to\infty}\mathbb{P}(\{c_n-c^*>\epsilon\})=0,\;\forall\epsilon>0.$$

RRT* is asymptotically optimal

The probability that the solution cost of RRT* is not more than $(1+\epsilon)c^*$ is 1, as the number of iterations go to infinity:

$$\lim_{n\to\infty}\mathbb{P}(\{c_n-c^*>\epsilon\})=0,\;\forall\epsilon>0.$$

However, the convergence rate is unknown!

- Why is RRT probabilistically complete?
- Why is RRT not asymptotically optimal?
- Why is RRT* asymptotically optimal?
Optimal tree-based motion planning

Probabilistic completeness proof RRT

Probabilistic Completeness RRT

- A planner is probabilistic complete if it finds a solution if one exists.
- Main proof for RRT is based on induction.
- Requires number of samples going to infinity.

Petr Svestka, "On Probabilistic Completeness and Expected Complexity of Probabilistic Path Planning", 1998 [svestka[:]1998]

Assumption A: There exists a feasible path.

Assumption B: Feasible path has ϵ clearance.

Assumption C: Sampling is dense.

Assumption C: Sampling is dense.

Assumption C: Sampling is dense.

Step 1: Cover feasible path with δ -spaced discs.

Step 2: Induction step (Base case is trivial)

Step 2a: Assume we reached the n-th ball (Induction Assumption). Need to prove that we reach (n+1)-th ball.

Step 2b: Sample in (n+1)-th ball

Step 2c: There exists a valid connection in free space

This shows that you can construct a $\delta\text{-similar}$ path

Summary

- Assumption A: There is a feasible path
- Assumption B: It has ϵ clearance
- Assumption C: Sampling is dense

Proof sketch

- Put δ -spaced balls onto feasible path (depending on ϵ)
- Execute induction proof
 - Proof that the first ball is reached (trivial)
 - Proof that you reach ball B_{k+1} from B_k (main part)

Question

What if we replace "feasible path" with "optimal path". Does the proof still hold?

Note

• There is no guarantee that you make a connection from B_k to B_{k+1} (there might be a different nearest neighbor)

This is why this is not an optimality proof!

Question

How do we fix this proof for optimality?

Optimal tree-based motion planning

Asymptotically optimal proof RRT*

S Karaman and E Frazzoli, "Sampling-based Algorithms for Optimal Motion Planning", 2011 [2]

Assumption A: There exists an *optimal* path.

Assumption B: Optimal path has ϵ clearance.

Assumption C: Sampling is dense.

RRT might find wrong wiring.

RRT* considers neighbors.

RRT* computes cost to come.

RRT* rewires accordingly.

Proof idea

Use rewiring operation to show that we reach B_{k+1} always from B_k .

Question: Do we need the second rewiring step?

Visualization

Informed optimal planning

Two problems with RRT*

- Does not prioritize paths as A* does
- Once path is found, it still samples region which cannot improve solution

Informed sampling

- Informed sampling restricts sampling to region which can improve solution
- Based upon concept of Omniscient set

Informed sampling

Reminder (see Lecture 3)

- Optimal cost-to-come g(x) (minimal cost from start to x)
- Optimal cost-to-go h(x) (minimal cost from x to goal)
- Optimal f-value f(x) = g(x) + h(x) (minimal cost, constrained to go through x)

Definition omniscient set

Let c be the cost of a our current solution. Definition omniscient set:

$$X = \{x \in \mathcal{Q} \mid f(x) < c\}$$

Question

What does the omniscient set represent?

Definition informed set

Let c be the cost of a our current solution. Definition admissible informed set:

$$\hat{X} = \{ x \in \mathcal{Q} \mid \hat{f}(x) < c \}$$

whereby $\hat{f} = g(x) + \hat{h}(x)$ with $\hat{h}(x)$ being an admissible heuristic.
Definition L2-informed set

Let c be the cost of a our current solution. Definition admissible informed set:

$$\hat{X} = \{x \in \mathcal{Q} \mid d(xstart, x) + d(x, xgoal) < c\}$$

For the L2-metric, this is called a prolate hyperspheroid

Informed Set

Informed Set

- Informed RRT* uses Informed Sets to sample more efficiently
- BIT* uses a growing informed set to be more efficient in the beginning

JD Gammell et al., "Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic", (2014) JD Gammell et al. "Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search", (2020)

Batch Informed Trees (BIT*)

Drawbacks of BIT*

- Only works for shortest path cost
- Only works in euclidean spaces

- Asymptotic optimal planning
- Tree-based (RRT, RRT*)

Next time

- Tree-based motion planning for kindynamic systems
- AO-RRT: Asymptotic optimality using cost extension
- SST*: Asymptotic optimality using forward propagation

- Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. 1984.
- Sertac Karaman and Emilio Frazzoli. "Sampling-Based Algorithms for Optimal Motion Planning". In: International Journal of Robotics Research (IJRR) 30.7 (2011), pp. 846–894. DOI: 10.1177/0278364911406761.
- [3] Kiril Solovey, Lucas Janson, Edward Schmerling, Emilio Frazzoli, and Marco Pavone. "Revisiting the Asymptotic Optimality of RRT*". In: IEEE International Conference on Robotics and Automation (ICRA). May 2020, pp. 2189–2195. DOI: 10.1109/ICRA40945.2020.9196553.

- [4] Dan Halperin. Algorithmic Robotics and Motion Planning. 2020. URL: http://acg.cs.tau.ac.il/courses/algorithmic-robotics/fall-2019-2020/algorithmic-robotics-and-motion-planning.
- [5] Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006. ISBN: 978-0-521-86205-9. URL: http://planning.cs.uiuc.edu.