
Motion Planning Lecture 6

Tree-based and Asymptotically-Optimal Planning

Wolfgang Hönig (TU Berlin) and Andreas Orthey (Realtime Robotics)

May 29, 2024

Recap

Foundations

2 Weeks (problem formulation, terminology, collision checking)

Search-based

2 Weeks (A* and variants;

state-lattice-based plan-

ning)

Sampling-based

5 Weeks (RRT, PRM,

OMPL, Sampling Theory)

Optimization-based

2 Weeks (SCP, TrajOpt)

Current and Advanced Topics

3 Weeks (Comparative Analysis, Hybrid- and Multi-Robot approaches)

1

Introduction

Today

• Tree-based motion planning (RRT)

• Introduction asymptotically optimal planning

• Optimal tree-based planning (RRT*, BIT*)

2

Tree-based motion planning

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

• Invented independently by Steve M. LaValle (1998) and David Hsu (1997)

• One of the most efficient algorithms for motion planning

• Growing a tree through random extensions

D Hsu, et al., ”Path planning in expansive configuration spaces” (1999)

SM LaValle, ”Rapidly-exploring random trees: A new tool for path planning”, (1998)

JJ Kuffner, SM LaValle, ”RRT-connect: An efficient approach to single-query path planning”, (2000)

3

Pseudocode RRT

1 def RRT(xstart, xgoal, mu):

2 V.AddNode(xstart)

3 while not finished:

4 xrand = SampleRandom()

5 xnear = NearestNeighbor(xrand)

6 xnew = Steer(xnear, xrand, mu)

7 if xnear == xnew:

8 continue

9 V.AddNode(xnew)

10 V.AddEdge(xnear, xnew)

11 if Distance(xnew, xgoal) < Epsilon:

12 return Path(xnew)

4

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

5

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

6

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

7

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

8

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

9

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

10

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

11

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

12

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

13

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

14

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

15

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

16

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

17

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

18

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

19

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

20

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

21

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

22

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

23

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

24

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

25

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

26

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

27

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

28

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

29

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

30

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

31

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

32

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

33

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

34

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

35

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

36

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

37

Rapidly-exploring random tree (RRT)

Efficiency

RRT is one of the most efficient planners because it has an implicit Voronoi bias

38

Rapidly-exploring random tree (RRT)

Voronoi region

Let q1, . . . , qK be a set of configurations on the state space Q. The Voronoi region is

defined as

Rk = {q ∈ Q | d(q,Rk) ≤ d(q,Rj), for all j ̸= k}

39

Rapidly-exploring random tree (RRT)

Voronoi bias

Probability of being selected is proportional to Voronoi region of a node in the tree.

Exploration/Exploitation trade-off.

40

Rapidly-exploring random tree (RRT)

Improvements

• Extend tree towards goal

• Sample goal region (with probability µ)

• Bidirectional tree

41

Improvement A - Extend towards goal

Extend towards goal

42

Improvement A - Extend towards goal

Extend towards goal

43

Improvement B - Sample goal region

Goal-bias

44

Improvement B - Sample goal region

Goal-bias

45

Improvement B - Sample goal region

Goal-bias

46

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

47

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

48

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

49

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

50

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

51

Rapidly-exploring random tree (RRT)

Further Improvements

• Path shortening after solution is found

• Multi-tree extension

• Targeted sampling

52

Introduction to Asymptotic

Optimality Planning

Optimality

Question

What is optimality?

53

Optimality

Question

What is optimality?

Optimality (High-level)

The property of a planner to return a motion which surpasses all other motions in

quality.

54

Optimality

Question

What is optimality?

Optimality (Mid-level)

From all possible paths, return the one which minimizes an objective function.

55

Optimality

Question

What is optimality?

Optimality (Low-level)

Given a motion planning problem Q, qI , qG , find a solution path p∗, which minimizes

an objective cost function c, i.e. c(p∗) ≤ c(p) for all p which solve the problem.

56

Optimality

Question

Why do we need optimality?

57

Aesthetics

58

Efficiency

59

Safety

60

Coverage

61

Optimality

Usefulness of Optimality

• Aesthetics: Should look good from an observer perspective

• Efficiency: Should find time optimal paths

• Safety: Should keep distance to prevent collisions

• Coverage: Should reach every point of the workspace

62

Optimality

Optimality principles also help us to search efficiently [1].

• A* heuristic: Prioritization search of best-cost paths VS. brute force search

• Pruning using necessary conditions

63

Introduction to Asymptotic

Optimality Planning

Cost framework

64

Costs

Cost function types

Objective (or cost) function c . Graph G = (V ,E) and paths P = (e1, . . . , eN).

• Cost for a configuration c : V → R≥0

• Cost of an edge c : E → R≥0

• Cost of a path c : P → R≥0

65

Cost functions examples

Shortest length

• Configuration cost: Zero

• Edge cost: Length of segment, metric distance

• Path cost: Sum of edge costs

66

Cost functions examples

Maximum clearance

• Configuration cost: Distance from robot to environment

• Edge cost: Maximum over all configurations on edge

• Path cost: Maximum over all edges on path

67

Cost functions examples

Lowest energy

• Configuration cost: Zero

• Edge cost: Energy spent going from A to B

• Path cost: Sum of edge energies

68

Costs

Additive costs

• Note: Most planners like RRT*, BIT* require additive cost!

• Additive cost: cost(A,B,C) = cost(A,B) + cost(B,C)

69

Costs

Non-additive cost example

Number of objects manipulated by

a robot manipulator

Bayraktar et al., ”Solving Rearrangement Puzzles using Path Defragmentation in Factored State

Spaces”, Robotics and Automation Letters (RA-L), 2023

70

Costs

Non-additive cost example

Average clearance cost.

71

Costs

Non-additive cost example

Average clearance cost.

72

Costs

Non-additive cost example

Average clearance cost.

73

Costs

Non-additive cost example

Average clearance cost.

74

Cost framework

Cost framework recap

• What: Best possible motion

• Why: Aesthetics, Efficiency, Safety, Coverag, Optimality for efficient search

• How: Cost framework, additive costs

75

Optimal tree-based motion planning

RRT and Optimality (1)

What if we keep running RRT?

Source: [2]

What causes this?

Edges are only added, never changed (rewired).

76

RRT and Optimality (1)

What if we keep running RRT?

Source: [2]

What causes this?

Edges are only added, never changed (rewired).

76

RRT and Optimality (1)

What if we keep running RRT?

Source: [2]

What causes this?

Edges are only added, never changed (rewired).

76

RRT and Optimality (2)

RRT is Suboptimal [2, Theorem 33]

The cost of the best solution returned by RRT converges to a suboptimal value, with

probability one:

P
({

lim
n→∞

Y RRT
n > c∗

})
= 1.

77

RRT and Optimality (2)

RRT is Suboptimal [2, Theorem 33]

The cost of the best solution returned by RRT converges to a suboptimal value, with

probability one:

P
({

lim
n→∞

Y RRT
n > c∗

})
= 1.

77

RRT*: RRT with Rewiring

• Pseudo code from [3]

• Parent of qnew : May use other

parent than qnear with lowest cost

(within neighborhood of qnew)

• Rewire edges: Use qnew as a new

parent, for neighboring

configurations, if it reduces costs

• Neighborhood radius depends on

tree size:

r(|V|) = γ

(
log |V|
|V|

) 1
d+1

78

RRT*: RRT with Rewiring

• Pseudo code from [3]

• Parent of qnew : May use other

parent than qnear with lowest cost

(within neighborhood of qnew)

• Rewire edges: Use qnew as a new

parent, for neighboring

configurations, if it reduces costs

• Neighborhood radius depends on

tree size:

r(|V|) = γ

(
log |V|
|V|

) 1
d+1

78

RRT*: RRT with Rewiring

• Pseudo code from [3]

• Parent of qnew : May use other

parent than qnear with lowest cost

(within neighborhood of qnew)

• Rewire edges: Use qnew as a new

parent, for neighboring

configurations, if it reduces costs

• Neighborhood radius depends on

tree size:

r(|V|) = γ

(
log |V|
|V|

) 1
d+1

78

RRT*: RRT with Rewiring

• Pseudo code from [3]

• Parent of qnew : May use other

parent than qnear with lowest cost

(within neighborhood of qnew)

• Rewire edges: Use qnew as a new

parent, for neighboring

configurations, if it reduces costs

• Neighborhood radius depends on

tree size:

r(|V|) = γ

(
log |V|
|V|

) 1
d+1

78

Rewiring

Rewiring

If we add a new configuration x , we execute two rewiring operations:

• Rewire x to best parent

• Rewire all children nodes

79

Pseudocode tree rewiring

1 def Rewire(x):

2 N = Neighbours(x)

3 for x_n in N:

4 Rewire(x_n, x)

5 for x_n in N:

6 Rewire(x, x_n)

7

8 def Rewire(x, y):

9 p = Steer(x, y)

10 if ConstraintFree(p):

11 if cost(x)+cost(p) < cost(y):

12 y.parent = x

80

Pseudocode RRT

1 def RRT(xstart, xgoal, mu):

2 V.AddNode(xstart)

3 while not finished:

4 xrand = SampleRandom()

5 xnear = NearestNeighbor(xrand)

6 xnew = Steer(xnear, xrand, mu)

7 if xnear == xnew:

8 continue

9 V.AddNode(xnew)

10 V.AddEdge(xnear, xnew)

11 Rewire(xnew) ##Rewiring operation to make it AO

12 if Distance(xnew, xgoal) < Epsilon:

13 return Path(xnew)

81

RRT* Example (1)

Source: [4]

Motion planning problem (orange = qstart) 82

RRT* Example (2)

Source: [4]

Intermediate tree and new sample qrand (purple ×)
83

RRT* Example (3)

Source: [4]

Nearest qnear in existing tree is found (here: qstart) 84

RRT* Example (4)

Source: [4]

Steer computes qnew on the line from qstart to qrand 85

RRT* Example (5)

Source: [4]

New edge is rejected (not collision-free)
86

RRT* Example (6)

Source: [4]

So far behavior is exactly the same as RRT; Fast-forward we have a larger tree
87

RRT* Example (7)

Source: [4]

New sample qrand and closest node in the tree qnear 88

RRT* Example (8)

Source: [4]

Resulting edge (qnew ,qnear) is collision-free 89

RRT* Example (9)

Source: [4]

This edge would be added in RRT
90

RRT* Example (10)

Source: [4]

RRT*: Consider all configuration of the tree in the neighborhood of qnew 91

RRT* Example (11)

Source: [4]

RRT*: Use a lower-cost parent for qnew (other than qnear) 92

RRT* Example (12)

Source: [4]

RRT*: Rewire the neighbors to use qnew as a parent to reduce the cost
93

RRT vs. RRT* (1)

Source: [2] 94

RRT vs. RRT* (2)

Source: [2] 95

RRT* Properties

RRT* is asymptotically optimal

The probability that the solution cost of RRT* is not more than (1 + ϵ)c∗ is 1, as the

number of iterations go to infinity:

lim
n→∞

P({cn − c∗ > ϵ}) = 0, ∀ϵ > 0.

However, the convergence rate is unknown!

96

RRT* Properties

RRT* is asymptotically optimal

The probability that the solution cost of RRT* is not more than (1 + ϵ)c∗ is 1, as the

number of iterations go to infinity:

lim
n→∞

P({cn − c∗ > ϵ}) = 0, ∀ϵ > 0.

However, the convergence rate is unknown!

96

RRT* vs RRT

• Why is RRT probabilistically complete?

• Why is RRT not asymptotically optimal?

• Why is RRT* asymptotically optimal?

97

Optimal tree-based motion planning

Probabilistic completeness proof RRT

98

Proof Sketch

Probabilistic Completeness RRT

• A planner is probabilistic complete if it finds a solution if one exists.

• Main proof for RRT is based on induction.

• Requires number of samples going to infinity.

99

Proof sketch

Petr Svestka, ”On Probabilistic Completeness and Expected Complexity of Probabilistic Path

Planning”, 1998 [svestka˙1998] 100

Proof sketch

Assumption A: There exists a feasible path.
101

Proof sketch

Assumption B: Feasible path has ϵ clearance.
102

Proof sketch

Assumption C: Sampling is dense.
103

Proof sketch

Assumption C: Sampling is dense.
104

Proof sketch

Assumption C: Sampling is dense.
105

Proof sketch

Step 1: Cover feasible path with δ-spaced discs.
106

Proof sketch

Step 2: Induction step (Base case is trivial)

107

Proof sketch

Step 2a: Assume we reached the n-th ball (Induction Assumption).

Need to prove that we reach (n+1)-th ball. 108

Proof sketch

Step 2b: Sample in (n+1)-th ball

109

Proof sketch

Step 2c: There exists a valid connection in free space

110

Proof sketch

This shows that you can construct a δ-similar path

111

Proof sketch

Summary

• Assumption A: There is a feasible path

• Assumption B: It has ϵ clearance

• Assumption C: Sampling is dense

Proof sketch

• Put δ-spaced balls onto feasible path (depending on ϵ)

• Execute induction proof

• Proof that the first ball is reached (trivial)

• Proof that you reach ball Bk+1 from Bk (main part)

112

Proof sketch

Question

What if we replace ”feasible path” with ”optimal path”. Does the proof still hold?

113

Proof sketch

Note

• There is no guarantee that you make a connection from Bk to Bk+1 (there might

be a different nearest neighbor)

This is why this is not an optimality proof!

114

Proof sketch

Question

How do we fix this proof for optimality?

115

Optimal tree-based motion planning

Asymptotically optimal proof RRT*

116

Proof sketch

S Karaman and E Frazzoli, ”Sampling-based Algorithms for Optimal Motion Planning”, 2011 [2]
117

Proof sketch

Assumption A: There exists an optimal path.
118

Proof sketch

Assumption B: Optimal path has ϵ clearance.
119

Proof sketch

Assumption C: Sampling is dense.
120

Proof sketch

RRT might find wrong wiring.

121

Proof sketch

RRT* considers neighbors.

122

Proof sketch

RRT* computes cost to come.

123

Proof sketch

RRT* rewires accordingly.

124

Proof sketch

Proof idea

Use rewiring operation to show that we reach Bk+1 always from Bk .

125

Proof sketch

Question: Do we need the second rewiring step? 126

Visualization

127

Informed optimal planning

Two problems with RRT*

RRT* example

128

Problems with RRT*

Two problems with RRT*

• Does not prioritize paths as A* does

• Once path is found, it still samples region which cannot improve solution

129

Informed sampling

Informed sampling

• Informed sampling restricts sampling to region which can improve solution

• Based upon concept of Omniscient set

130

Informed sampling

Reminder (see Lecture 3)

• Optimal cost-to-come g(x) (minimal cost from start to x)

• Optimal cost-to-go h(x) (minimal cost from x to goal)

• Optimal f-value f (x) = g(x) + h(x) (minimal cost, constrained to go through x)

Definition omniscient set

Let c be the cost of a our current solution. Definition omniscient set:

X = {x ∈ Q | f (x) < c}

Question

What does the omniscient set represent?

131

Informed sampling

Definition informed set

Let c be the cost of a our current solution. Definition admissible informed set:

X̂ = {x ∈ Q | f̂ (x) < c}

whereby f̂ = g(x) + ĥ(x) with ĥ(x) being an admissible heuristic.

132

Informed sampling

Definition L2-informed set

Let c be the cost of a our current solution. Definition admissible informed set:

X̂ = {x ∈ Q | d(xstart, x) + d(x , xgoal) < c}

For the L2-metric, this is called a prolate hyperspheroid

133

Informed sampling

Informed Set

134

Informed sampling

Informed Set

135

Informed sampling

Informed Set

136

Informed sampling

Informed Set

137

Informed sampling

• Informed RRT* uses Informed Sets to sample more efficiently

• BIT* uses a growing informed set to be more efficient in the beginning

JD Gammell et al., ”Informed RRT*: Optimal sampling-based path planning focused via direct

sampling of an admissible ellipsoidal heuristic”, (2014)

JD Gammell et al. ”Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search”,

(2020)

138

Batch Informed Trees (BIT*)

BIT* example

139

Drawbacks

Drawbacks of BIT*

• Only works for shortest path cost

• Only works in euclidean spaces

140

Conclusion

• Asymptotic optimal planning

• Tree-based (RRT, RRT*)

Next time

• Tree-based motion planning for kindynamic systems

• AO-RRT: Asymptotic optimality using cost extension

• SST*: Asymptotic optimality using forward propagation

141

References i

[1] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem

Solving. 1984.

[2] Sertac Karaman and Emilio Frazzoli. “Sampling-Based Algorithms for Optimal

Motion Planning”. In: International Journal of Robotics Research (IJRR) 30.7

(2011), pp. 846–894. doi: 10.1177/0278364911406761.

[3] Kiril Solovey, Lucas Janson, Edward Schmerling, Emilio Frazzoli, and

Marco Pavone. “Revisiting the Asymptotic Optimality of RRT*”. In: IEEE

International Conference on Robotics and Automation (ICRA). May 2020,

pp. 2189–2195. doi: 10.1109/ICRA40945.2020.9196553.

https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/ICRA40945.2020.9196553

References ii

[4] Dan Halperin. Algorithmic Robotics and Motion Planning. 2020. url:

http://acg.cs.tau.ac.il/courses/algorithmic-robotics/fall-2019-

2020/algorithmic-robotics-and-motion-planning.

[5] Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006. isbn:

978-0-521-86205-9. url: http://planning.cs.uiuc.edu.

http://acg.cs.tau.ac.il/courses/algorithmic-robotics/fall-2019-2020/algorithmic-robotics-and-motion-planning
http://acg.cs.tau.ac.il/courses/algorithmic-robotics/fall-2019-2020/algorithmic-robotics-and-motion-planning
http://planning.cs.uiuc.edu

	Tree-based motion planning
	Introduction to Asymptotic Optimality Planning
	Cost framework

	Optimal tree-based motion planning
	Probabilistic completeness proof RRT
	Asymptotically optimal proof RRT*

	Informed optimal planning
	Appendix

